Skip to main content
Redhat Developers  Logo
  • Products

    Platforms

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat AI
      Red Hat AI
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • View All Red Hat Products

    Featured

    • Red Hat build of OpenJDK
    • Red Hat Developer Hub
    • Red Hat JBoss Enterprise Application Platform
    • Red Hat OpenShift Dev Spaces
    • Red Hat OpenShift Local
    • Red Hat Developer Sandbox

      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Secure Development & Architectures

      • Security
      • Secure coding
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • Product Documentation
    • API Catalog
    • Legacy Documentation
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Can't We Just Run Boot2Docker in Production?

September 24, 2015
Scott McCarty (fatherlinux)
Related topics:
Containers

Share:

    Background

    I’ve been working with the CTO of a online video game company to develop a container architecture for his business. The goal is to simplify the deployment of new applications as well as make it easier to go back and change code on older applications. The desired state is environmental parity across the infrastructure -- this will simplify the assignment of work on different applications to different developers. From developer laptops to production servers, the code will just work!

    While Video game production has unique technical and business requirements, infrastructure parity from developer laptops to production servers is a common desire that touches every industry that relies on application delivery.

    An Interesting Problem

    While discussing possible architectures something interesting came up - When doing video game programming, it is common to embed a scripting language into your main programming language. Lua happens to be a popular language for scripting video games. This company compiles their own Ruby interpreter because they need to embed to script game play logic.

    Following the LuaJIT installation instructions, they started on a development server that was set up like production. Ruby compiled without a problem and they began development. As they moved further into the development lifecycle, it became clear that it would be easier and more convenient to move most of the development work to the developer laptops.

    So, they began the process of installing all of the developer tools on Mac OSX. Once complete, they began the process of compiling Ruby with LuaJIT. Everything compiled fine, but every time they ran the binary it would exit with a segmentation fault (segfault). The development team worked for four solid hours debugging. Eventually, they realized that they had missed a small piece of documentation.

    From the LuaJIT installation guide:

    If you're building a 64 bit application on OSX which links directly or indirectly against LuaJIT, you need to link your main executable with these flags:

    -pagezero_size 10000 -image_base 100000000

    Also, it's recommended to rebase all (self-compiled) shared libraries which are loaded at runtime on OSX/x64 (e.g. C extension modules for Lua). See: man rebase

    Lesson Learned

    Well, the user space matters to developers. Though most non-video game developers are not compiling their own Ruby, almost every language has C based modules that do need compiled. Compiled modules are popular in Perl, Ruby, PHP, Python, and even Java has JNI. Even if you utilize the system() function to execute a shell script, you are relying on the user space and things can get hairy.

    User Space vs. Kernel Space - Infrastrcuture Parity

    At the end of the day, the CTO said, “By using Docker, I can avoid this [compile problem] and create a documented and reproducible Linux environment. Docker lets me develop an image on OS X and then deploy to Linux servers in production.”

    Infrastructure parity from developer laptops to production servers allows development teams to leverage the power of container images. These container images make it easy to avoid bugs created by user space differences between platforms. Let’s shave less Yaks and write more code!

    Last updated: February 26, 2024

    Recent Posts

    • Profiling vLLM Inference Server with GPU acceleration on RHEL

    • Network performance in distributed training: Maximizing GPU utilization on OpenShift

    • Clang bytecode interpreter update

    • How Red Hat has redefined continuous performance testing

    • Simplify OpenShift installation in air-gapped environments

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Platforms

    • Red Hat AI
    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform
    • See all products

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue