Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

      • Red Hat OpenShift AI
      • Red Hat Enterprise Linux AI
    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Continuous Integration Strategies (Part 1 of 3)

November 8, 2013
Langdon White
Related topics:
Linux
Related products:
Red Hat Enterprise Linux

Share:

    This is part 1 of a new three-part article about Continuous Integration Strategies.  We hope you enjoy it!

    EXECUTIVE SUMMARY

    Continuous Integration (CI) offers a method of avoiding the integration issues that typically occur when there are extended periods between developers checking in working copies of code.  However, the technique also offers significant benefits where an application is designed to run on multiple versions of a platform and the application and platform are changing. In both cases, Continuous Integration facilitates the early detection and eradication of software defects: defects that may otherwise go undetected for days, weeks, or months after they were created. Detecting and resolving these problems early in the development process can translate into lower costs and shorter timelines.

    This paper aims to simplify the adoption of Continuous Integration by software vendors targeting Red Hat® Enterprise Linux®. It does this by providing guidance on:

    • Accommodating changes in application software and the OS.
    • Versions of Red Hat Enterprise Linux against which an application should be tested.
    • Test creation.
    • Setup and maintenance of the test environment.

    Overall the reader will gain an understanding of what should be considered to give the widest possible assurance that the product will run on Red Hat Enterprise Linux.

    By adopting the practice of Continuous Integration and the recommendations in this white paper, application developers targeting Red Hat Enterprise Linux will be able to offer their customers a higher degree of assurance that software will perform as expected. An additional benefit is that achieving self-certification should be easier, providing further reassurance to customers.

    THE PROMISE OF CONTINUOUS INTEGRATION

    The time between the introduction of a software defect and its detection can have a dramatic  effect on the elimination of that defect: find the defect soon after its introduction, with the relevant changes fresh in the developer’s mind, and it will be easy to eliminate — find it later, after the details of the change have faded, and the solution can be elusive.

    At the same time, any project that has multiple developers working on multiple code streams will face the inevitable requirement to integrate these code streams back into the mainline—and once again, the longer each working copy has been separated from the mainline and the greater the number of working copies, the more likely that integrating code changes to the mainline will be a challenge and the effort required difficult to predict.

    There are two additional issues that can complicate development if integration and testing aren’t performed regularly.

    Where issues are identified with a target platform, it’s not uncommon for the application developer to code workarounds into the application software, increasing code complexity and reducing maintainability. There may be no need for a workaround, however, if a patch for the target environment already exists. Checking for platform updates as a part of the integration and testing process enables timely patch validation against applications, eliminating the need for workarounds in many cases.

    There are also a small but functionally significant number of libraries where innovation and improvement mean that changes occur regularly, such as Mozilla XULRunner. Again, here regular testing as the library and application change will reduce the likelihood of the ‘surprises’ inherent when there are protracted periods between build and test cycles.

    Continuous Integration (CI) is a technique that seeks to minimize these issues by integrating soft- ware changes into the mainline code continuously—usually several times a day—then building and testing the software to identify any defects that can then be quickly rectified, maintaining the integrity of the software.

    For Red Hat Enterprise Linux software vendors, the CI environment needed may seem complex because developers need to build and test against multiple production environments that reflect environments operated by various customers or impending new releases.

    This whitepaper looks at CI in general, but focuses on the particular requirements that the real world diversity of Red Hat Enterprise Linux installations imposes on software vendors—offering guidance on creating a testing regime and test environments to optimize the testing strategy.

    CI BASICS

    Continuous Integration emerged as part of the Extreme Programming development process in the late 1990s, where it is one of the original twelve practices. As a result there is already a significant body of knowledge regarding CI (see the references section). Therefore this paper provides only a summary overview of the components needed for CI implementation and the process involved in operating such an implementation.

    A typical Continuous Integration environment might contain the following key components:

    • A developer modifies source code and any related artifacts required to implement defined changes, and then pushes the changes into a version control system/repository (for example Git or Subversion).
    • A continuous integration server, such as Jenkins, Travis, or Wercker, monitors changes in the repository and identifies the need for an integration build/test and runs:
      • The build manager—such as Apache Ant, Apache Ivy, Gradle, or Apache Maven—to create the application (providing test reports as it does so).
      • An environment provisioning tool—such as Red Hat Satellite, Cobbler, Ansible, Puppet, Chef, or  BoxGrinder—to create the environments in which to test the software against one or more ver- sions of an operating system.
      • A test robot—such as Beaker, or Autotest for native applications or Selenium for web apps—to execute integration and end-to-end tests on the build application, again providing test reports as it does so.
    • The continuous integration server parses the test reports and provides feedback to the developer. At this point, the developer either implements any necessary defect fixes or continues with the application development.

    picture for CI whitepaper - figure01_outlined-01View part 2 here.

    Last updated: April 5, 2018

    Recent Posts

    • AI meets containers: My first step into Podman AI Lab

    • Live migrating VMs with OpenShift Virtualization

    • Storage considerations for OpenShift Virtualization

    • Upgrade from OpenShift Service Mesh 2.6 to 3.0 with Kiali

    • EE Builder with Ansible Automation Platform on OpenShift

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue