Skip to main content
Redhat Developers  Logo
  • Products

    Platforms

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat AI
      Red Hat AI
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • View All Red Hat Products

    Featured

    • Red Hat build of OpenJDK
    • Red Hat Developer Hub
    • Red Hat JBoss Enterprise Application Platform
    • Red Hat OpenShift Dev Spaces
    • Red Hat OpenShift Local
    • Red Hat Developer Sandbox

      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Secure Development & Architectures

      • Security
      • Secure coding
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • Product Documentation
    • API Catalog
    • Legacy Documentation
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

How data layout affects memory performance

 

April 2, 2019
William Cohen
Related topics:
Developer Tools
Related products:
Developer Tools

Share:

    The mental model most people have of how computer memory (aka Random Access Memory or RAM) operates is inaccurate. The assumption that any access to any byte in memory has the same low cost does not hold on modern processors. In this article, I'll explain what developers need to know about modern memory and how data layout can affect performance.

    Current memory is starting to look more like an extremely fast block storage device. Rather than reading or writing individual bytes, the processor is reading or writing groups of bytes that fill a cache line (commonly 32 to 128 bytes in size). An access to memory requires well over a hundred clock cycles, two orders of magnitude slower than executing an instruction on the processor. Thus, programmers might reconsider the data structures used in their program if they are interested in obtaining better performance.

    Latency is not improving

    The first thing to note about memory is that the latency for accessing main memory is not improving. Much of the bandwidth improvement seen on processors is due to transferring larger groups of bytes in a single transaction. In the 1980s, processors typically transferred a few bytes (4 or fewer bytes) at a time. Current processor’s memory operations are moving much larger groups of 32 to 128 bytes as a group—the amount of data that fits in a single cache line. Every time memory is accessed, there is some delay due to setup time selecting the location in memory being accessed. Sharing that latency between a larger group of bytes reduces the cost per byte. This is analogous to a bus not being any faster than a car, but the greater carrying capacity of the bus will get more people moved between two points than the car in a given amount of time.

    However, these wider memory operations assume that all the data read or written is actually being used by the processor. If the processor fetches a 64-byte chunk of memory and only modifies one byte then stores that changed byte back to memory, more than 98% of the memory bandwidth has been wasted. Data structures may be padded for data alignment as mentioned in “How to avoid wasting megabytes of memory a few bytes at a time.” Those unused bytes used to align fields in the data structure contribute to the wasted bandwidth every time the data structure is loaded from memory or stored to memory. Organizing the data structures to avoid padding for data alignment can lead to higher effective bandwidth.

    The processor may also attempt to hide memory access latency by speculatively fetching data. The hardware analyzes the sequences memory accesses and detects accesses that have a constant number of bytes between them. Once these strides through memory are detected, the processor starts prefetching the memory before the code actually requests the memory, which reduces the latency observed in the code. For this approach to work, the access patterns used in the code need to be very simple, such as every nth element in an array. The memory latency of random memory accesses due to pointer chasing through linked lists will not be reduced by the prefetch mechanisms.

    Vector-style instructions

    New processors include vector-style instructions such as Advanced Vector Extensions (AVX), which can perform four or eight operations in parallel. However, to use these instructions, the operands need to group of adjacent elements in an array. Using Arrays of Structures (AoS) may prevent using the vector-style instruction on the fields from multiple structures. Developers may want to use Structure of Arrays (SoA) instead to get a data layout that allows the use of the vector instruction. Having like elements in arrays can also reduce the padding in the data, resulting in more effective memory bandwidth.

    Given the way that the processor treats memory, developers might improve performance of memory-intensive applications by designing the data structures more like files on a block device:

    1. Arrange layout to minimize reading/writing useless bytes (padding for alignment)
    2. Minimize random accesses
    3. Access elements with predictable stride, ideally sequentially (stride 1)

    For additional details on optimizing memory performance refer to Ulrich Drepper’s “What Every Programmer Should Know about Memory." It offers a great deal of useful information about how memory actually works. The Intel® 64 and IA-32 Architectures Optimization Reference Manual also goes in the great detail on how to structure code to obtain better performance from memory.

    Last updated: May 30, 2024

    Recent Posts

    • Cloud bursting with confidential containers on OpenShift

    • Reach native speed with MacOS llama.cpp container inference

    • A deep dive into Apache Kafka's KRaft protocol

    • Staying ahead of artificial intelligence threats

    • Strengthen privacy and security with encrypted DNS in RHEL

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue