Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Speech-to-text with Whisper and Red Hat AI Inference Server

June 10, 2025
Philip Hayes
Related topics:
Artificial intelligence
Related products:
Red Hat AI

Share:

    This article introduces Red Hat AI Inference Server, recently announced at Red Hat Summit, and guides you through deploying a Whisper model on Red Hat AI Inference Server within a Red Hat Enterprise Linux (RHEL) environment.

    What is Red Hat AI Inference Server?

    Red Hat AI Inference Server is designed to optimize the serving and inferencing of large language models (LLMs). Red Hat AI Inference Server focuses on boosting LLM performance while reducing associated costs. It provides enterprise-grade stability and security while being built on open source software, particularly the upstream vLLM project.

    Red Hat AI Inference Server integrates innovative features like continuous batching, which processes requests as they arrive, and tensor parallelism, which distributes LLM workloads across multiple GPUs. These features work together to reduce latency and increase throughput, improving overall performance. 

    A key cost-saving feature of Red Hat AI Inference Server is PagedAttention. This technology optimizes memory allocation for LLMs, similar to virtual memory in operating systems, resulting in significant memory savings and reduced costs.

    What is a Whisper model?

    Whisper models are automatic speech recognition (ASR) systems developed by OpenAI. They are designed to convert spoken language into written text and are capable of handling multiple languages, accents, and noisy audio environments.

    Running Whisper on Red Hat AI Inference Server with RHEL 9 and Podman

    We're going to go through the steps to run OpenAI’s Whisper model using Red Hat AI Inference Server on a Red Hat Enterprise Linux 9 environment. This guide is tailored for NVIDIA GPU-enabled setups using Podman containers and is tested on an AWS EC2 instance. 

    Prerequisites

    Before we get started, ensure your environment meets these essential requirements:

    • NVIDIA drivers installed
    • NVIDIA Container Toolkit and Container Device Interface
    • Podman

    Tested environment

    This setup was tested in the following environment:

    • AWS EC2 Instance: A g6.6xlarge: 1× NVIDIA L4 GPU with 22 GB GPU memory running RHEL 9

    Pre-check

    Let's first verify the ability to access GPUs via Podman with this command:

    sudo podman run --rm --device nvidia.com/gpu=all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi

    If prompted, select the image from docker.io.

    The output should look similar to this, confirming your GPU setup is recognized:

    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 535.104.05    Driver Version: 535.104.05    CUDA Version: 12.2  |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  NVIDIA L4           On   | 00000000:00:1E.0 Off |                    0 |
    | N/A   35C    P8     9W /  72W |      0MiB / 22528MiB |      0%      Default |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+

    If you get an error message at this stage, you will need to check the installation of the NVIDIA drivers and the NVIDIA container toolkit.

    Running Red Hat AI Inference Server

    Now that we've validated we can access the GPUs via Podman, we can download and run the Red Hat AI Inference Server image from the Red Hat registry.

    Step 1: Login to the Red Hat registry

    First, get login credentials for the Red Hat registry by following the instructions on this page.

    Login to the Red Hat registry with your credentials:

    podman login registry.redhat.io

    Step 2: Pull the Red Hat AI Inference Server image

    Start by pulling the CUDA-enabled Red Hat AI Inference Server container image:

    podman pull registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.0.0

    Step 3: Set Your Hugging Face Token

    To authenticate with Hugging Face and download the Whisper model, set your token in the environment.  Get your token from https://huggingface.co/settings/tokens.

    export HF_TOKEN=your_huggingface_token_here

    Step 4: Run the Red Hat AI Inference Server container

    Create a src folder on your local machine; this will be used to persist the model once it's downloaded from Hugging Face:

    mkdir -p src
    chmod a+rwX src

    Now, launch the Whisper inference service using the following Podman command:

    podman run --rm \
      --device nvidia.com/gpu=all \
      --ipc=host \
      -p 8000:8000 \
      --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
      --env "HF_HUB_OFFLINE=0" \
      -v ./src:/opt/app-root/src \
      --name=rhaiis \
      registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.0.0 \
      --model openai/whisper-large-v3

    Once started, you should see log output confirming the API server is running.

    INFO 05-15 13:35:22 [api_server.py:1081] Starting vLLM API server on http://0.0.0.0:8000
    INFO 05-15 13:35:22 [launcher.py:26] Available routes are:
    INFO 05-15 13:35:22 [launcher.py:34] Route: /openapi.json, Methods: HEAD, GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /docs, Methods: HEAD, GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: HEAD, GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /redoc, Methods: HEAD, GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /health, Methods: GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /load, Methods: GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /ping, Methods: GET, POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /tokenize, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /detokenize, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/models, Methods: GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /version, Methods: GET
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/chat/completions, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/completions, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/embeddings, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /pooling, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /score, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/score, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/audio/transcriptions, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /rerank, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v1/rerank, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /v2/rerank, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /invocations, Methods: POST
    INFO 05-15 13:35:22 [launcher.py:34] Route: /metrics, Methods: GET
    INFO:     Started server process [1]
    INFO:     Waiting for application startup.
    INFO:     Application startup complete.

    Step 5: Set up and SSH tunnel to the RHEL VM

    To access the running API from your local machine, the simplest method is to use SSH port forwarding. From a second terminal session, run:

    ssh -i "rhaiis.pem" -L 8000:localhost:8000 username@server.hostname

    Step 6: Clone and run the sample UI application

    We've provided a sample Whisper UI application to test audio transcription. Start by cloning the repository on your local machine:

    git clone https://github.com/rh-aiservices-bu/vllm-whisper
    cd vllm-whisper

    Set up a virtual Python environment

    Ensure Python 3.8+ is installed. Create and activate a virtual environment:

    python3 -m venv venv
    source venv/bin/activate 

    Install dependencies

    Navigate to the ui directory and install packages:

    cd ui
    pip install -r requirements.txt

    Set Whisper API endpoint

    Configure the API endpoint:

    export WHISPER_URL=http://localhost:8000

    Run the Streamlit application

    Launch the UI with:

    streamlit run app.py

    Testing the transcription

    Once the application is running, you can interact with Whisper directly from your browser at http://localhost:8501/ as shown in Figure 1.

    whisper Transcription with RHAIIS demo app
    Figure 1: Whisper transcription with the Red Hat AI Inference Server demo app.

    When you click the Record Audio button, the application captures a 5-second audio clip using your microphone, sends it as a WAV file to the Whisper server, and displays the transcribed text in the UI.

    Conclusion

    Running Whisper on Red Hat AI Inference Server with RHEL 9 is extremely easy once you've set up the necessary GPU support and container environment. With Podman and the sample Streamlit UI application, you can quickly deploy and test powerful speech recognition capabilities on your own infrastructure.

    Last updated: June 11, 2025

    Related Posts

    • LLM Compressor is here: Faster inference with vLLM

    • How to integrate vLLM inference into your macOS and iOS apps

    • Distributed inference with vLLM

    • How we optimized vLLM for DeepSeek-R1

    • Llama 4 herd is here with Day 0 inference support in vLLM

    • vLLM V1: Accelerating multimodal inference for large language models

    Recent Posts

    • GuideLLM: Evaluate LLM deployments for real-world inference

    • Unleashing multimodal magic with RamaLama

    • Integrate Red Hat AI Inference Server & LangChain in agentic workflows

    • Streamline multi-cloud operations with Ansible and ServiceNow

    • Automate dynamic application security testing with RapiDAST

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue