Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

      • Red Hat OpenShift AI
      • Red Hat Enterprise Linux AI
    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Build an AI agent to automate TechDocs in Red Hat Developer Hub

Enable your documentation workflows with intelligent automation and Red Hat Developer Hub integration

May 30, 2025
Fortune Ndlovu
Related topics:
Artificial intelligenceDeveloper ProductivityDeveloper Tools
Related products:
Red Hat Developer Hub

Share:

    Red Hat Developer Hub is a powerful platform that helps developer teams centralize their software components, streamline collaboration, and provide essential resources like TechDocs, software templates, and service catalogs all in one place. With TechDocs enabled, teams can automatically surface technical documentation alongside their services whenever they update their repositories, promoting better discoverability and alignment across projects.

    However, despite these advantages, common challenges persist; for instance, teams often have multiple priorities competing for attention. Updating technical documentation, although critical, can be time-consuming and sometimes neglected. In many cases, teams may not even know what documentation to update after a change, or they might want to centralize legacy or external repositories into the Red Hat Developer Hub, only to realize that these repos are missing the required TechDocs structure (like mkdocs.yaml, catalog-info.yaml, or docs/index.md).

    This is where AI agents become crucial.

    By intelligently scanning repositories, detecting gaps, and automatically generating the necessary TechDocs structure and initial content, an AI agent can help documentation keep pace with the software development life cycle (SDLC), without burdening busy teams.

    In this article, we will build on this foundation by creating an AI agent that:

    • Scans repositories.
    • Detects missing TechDocs artifacts.
    • Automatically generates the core documentation files.
    • Seamlessly integrates into your SDLC workflows.

    By the end, you will not only have a working AI agent that enhances your RHDH instance, but you will also start imagining what is possible when you embed intelligent automation into your infrastructure.

    What is an AI agent?

    An AI agent is a system that perceives information, makes decisions, and takes actions autonomously to achieve a specific goal. It combines data gathering, reasoning (often with AI models), and automated execution, without requiring constant human input.

    We are building an AI agent that:

    • Clones a GitHub repository,
    • Scans and understands its structure,
    • Generates high-quality Red Hat Developer Hub (TechDocs) files automatically,
    • Opens a pull request to contribute those changes,
    • (Optionally) Registers the project directly into Developer Hub.

    This agent intelligently reads real project content (not just file names) and produces A-grade documentation, all with minimal or no human intervention. The resulting project structure will be organized as follows:

    agent/
    ├── llm-client/
    │   ├── doc_writer.py
    │   ├── generate_full_docs.py
    │   ├── llm_client.py
    │   └── prompt_builder.py
    ├── repo-scanner/
    │   ├── scanner.py
    │   └── requirements.txt
    ├── templates/
    │   ├── catalog-info.yaml.tpl
    │   ├── index.md.tpl
    │   ├── mkdocs.yaml.tpl
    ├── commit_and_pr.sh
    register_component.sh (optional)
    runner.sh
    README.md

     Before we start programming, ensure you have the following system requirements:

    • GitHub account and personal access token (PAT)
    • Python 3.9+
    • Bash shell (Linux, macOS, Windows Subsystem for Linux)
    • HuggingFace account and token
    • 20 GB+ free disk space
    • Access to Red Hat Developer Hub (optional)
    • CPU: 4 cores minimum
    • RAM: 8–16 GB
    • Disk: 20 GB+ free
    • Internet access
    • GPU: Optional (CPU models only)
    • Originally tried ibm-granite/granite-3.1-8b-instruct — too large for local CPU
    • Using microsoft/phi-2 (small, CPU-friendly) 

    Step 1: Create runner.sh

    runner.sh is the main orchestrator script for the TechDocs AI agent. It automates the full workflow. This script lets you run the entire agent with a single command.

    #!/bin/bash
    # Main orchestrator
    set -e
    if [ -z "$1" ]; then
      echo "Error: No GitHub repo URL provided!"
      echo "Usage: bash runner.sh <repo-url>"
      exit 1
    fi
    REPO_URL="$1"
    REPO_NAME=$(basename -s .git "$REPO_URL")
    CLONE_DIR="$REPO_NAME"
    REPO_SUMMARY="repo-summary.json"
    echo "Cloning $REPO_URL into $CLONE_DIR..."
    rm -rf "$CLONE_DIR"
    git clone "$REPO_URL" "$CLONE_DIR"
    if [ $? -ne 0 ]; then
      echo "Failed to clone repo $REPO_URL"
      exit 1
    fi
    echo "Scanning repo..."
    python3 agent/repo-scanner/scanner.py "$CLONE_DIR" > "$REPO_SUMMARY"
    echo "Patching repo-summary.json with repo_url and repo_name..."
    python3 -c "
    import json
    data = json.load(open('$REPO_SUMMARY'))
    data['repo_name'] = '$REPO_NAME'
    data['repo_url'] = '$REPO_URL'
    with open('$REPO_SUMMARY', 'w') as f:
        json.dump(data, f, indent=2)
    "
    echo "Generating full TechDocs using LLM..."
    python3 agent/llm-client/generate_full_docs.py "$REPO_SUMMARY" "$CLONE_DIR"
    echo "Full documentation generated."
    # Commit and open PR
    bash agent/commit_and_pr.sh "$CLONE_DIR" "$REPO_NAME"
    echo "PR creation completed!"
    echo "Please manually register the catalog-info.yaml in Developer Hub after PR is merged."

     Step 2: Create agent/repo-scanner/scanner.py

    scanner.py reads a local Git repository and outputs a structured JSON summary of its content. This file prepares the raw data that the LLM will later use to generate full TechDocs.

    import os
    import json
    LANGUAGE_EXTENSIONS = {
        '.py': 'Python',
        '.go': 'Go',
        '.js': 'JavaScript',
        '.ts': 'TypeScript',
        '.java': 'Java',
        '.cpp': 'C++',
        '.c': 'C',
        '.rb': 'Ruby',
        '.rs': 'Rust',
        '.sh': 'Shell',
        '.yaml': 'YAML',
        '.yml': 'YAML',
        '.md': 'Markdown',
        '.ipynb': 'Jupyter Notebook',
        '.Dockerfile': 'Dockerfile'
    }
    def load_text_file(filepath, max_chars=3000):
        try:
            with open(filepath, "r", encoding="utf-8") as f:
                return f.read(max_chars)
        except Exception:
            return ""
    def extract_notebook_text(filepath, max_chars=3000):
        try:
            import json
            with open(filepath, "r", encoding="utf-8") as f:
                nb = json.load(f)
                text = ""
                for cell in nb.get('cells', []):
                    if cell.get('cell_type') == 'markdown':
                        text += "".join(cell.get('source', [])) + "\n"
                return text[:max_chars]
        except Exception:
            return ""
    def detect_language(file_path):
        ext = os.path.splitext(file_path)[1]
        return LANGUAGE_EXTENSIONS.get(ext, None)
    def scan_repo(repo_path):
        languages = []
        folder_structure = []
        key_files_content = {}
        extracted_documents = {}
        for root, dirs, files in os.walk(repo_path):
            for d in dirs:
                rel_path = os.path.relpath(os.path.join(root, d), repo_path)
                folder_structure.append(rel_path)
            for file in files:
                file_path = os.path.join(root, file)
                rel_file_path = os.path.relpath(file_path, repo_path)
                lang = detect_language(file)
                if lang:
                    languages.append(lang)
                if file in ['README.md', 'catalog-info.yaml', 'mkdocs.yaml']:
                    key_files_content[file] = load_text_file(file_path)
                if file.endswith(('.md', '.txt', '.py')):
                    extracted_documents[rel_file_path] = load_text_file(file_path)
                if file.endswith('.ipynb'):
                    extracted_documents[rel_file_path] = extract_notebook_text(file_path)
        languages = list(set(languages))
        repo_summary = {
            "repo_name": os.path.basename(repo_path),
            "languages_detected": languages,
            "key_files": key_files_content,
            "folder_structure": folder_structure,
            "extracted_documents": extracted_documents,
        }
        print(json.dumps(repo_summary, indent=2))
        return repo_summary
    if __name__ == "__main__":
        import sys
        if len(sys.argv) != 2:
            print("Usage: python scanner.py /path/to/repo")
            sys.exit(1)
        scan_repo(sys.argv[1])

     Step 3: Create agent/repo-scanner/requirements.txt

    This file lists the Python dependencies for the Repo Scanner module. Currently, it only includes:

    # For better terminal output (optional but recommended)
    rich
    transformers
    accelerate
    sentencepiece
    huggingface_hub
    jinja2

    Install dependencies with:

    pip install -r agent/repo-scanner/requirements.txt

    That completes the repo-scanner/ folder setup.

    Step 4: Create agent/llm-client/generate_full_docs.py

    generate_full_docs.py takes the scanned repo summary and builds full TechDocs for the repository. This script transforms raw repo structure into a working, A-grade TechDocs setup.

    import json
    import os
    from llm_client import LLMClient
    from prompt_builder import build_prompt_for_file
    from doc_writer import save_doc
    from jinja2 import Template
    ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
    TEMPLATE_PATHS = {
        "mkdocs.yaml": os.path.join(ROOT_DIR, "templates/mkdocs.yaml.tpl"),
        "catalog-info.yaml": os.path.join(ROOT_DIR, "templates/catalog-info.yaml.tpl"),
    }
    def render_template(template_path, variables):
        with open(template_path, "r") as f:
            content = f.read()
        template = Template(content)
        return template.render(**variables)
    def generate_index_md_from_summary(repo_summary, docs_dir):
        extracted_docs = repo_summary.get("extracted_documents", {})
        repo_url = repo_summary.get("repo_url", None)
        repo_name = repo_summary.get("repo_name", "Repository")
        
        if extracted_docs:
            _, summary = next(iter(extracted_docs.items()))
            
            index_content = f"""---
    title: "{repo_name} Documentation"
    ---
    # Overview
    {summary.strip()}
    ## Project Structure
    This repository contains code and assets primarily written in:
    {', '.join(repo_summary.get('languages_detected', [])) or 'Unknown'}
    ## Getting Started
    - Review the main notebook or scripts.
    - Follow installation instructions if available.
    - Explore and extend the project.
    {"\n\n---\n\n[View source code on GitHub](" + repo_url + ")" if repo_url else ""}
    """
            save_doc(docs_dir, "index.md", index_content)
        else:
            print("No extracted documents found, falling back to LLM...")
            client = LLMClient()
            prompt = build_prompt_for_file(repo_summary)
            generated_content = client.generate(prompt, max_tokens=2000)
            save_doc(docs_dir, "index.md", generated_content)
    def generate_all_docs(repo_summary_path, repo_dir):
        with open(repo_summary_path, "r") as f:
            repo_summary = json.load(f)
        repo_name = repo_summary.get("repo_name", "unknown-repo")
        docs_dir = os.path.join(repo_dir, "docs")
        os.makedirs(docs_dir, exist_ok=True)
        # Create mkdocs.yaml
        mkdocs_path = os.path.join(repo_dir, "mkdocs.yaml")
        if not os.path.exists(mkdocs_path):
            print("Creating mkdocs.yaml from template...")
            mkdocs_content = render_template(TEMPLATE_PATHS["mkdocs.yaml"], {"repo_name": repo_name})
            with open(mkdocs_path, "w") as f:
                f.write(mkdocs_content)
        # Create catalog-info.yaml
        catalog_path = os.path.join(repo_dir, "catalog-info.yaml")
        if not os.path.exists(catalog_path):
            print("Creating catalog-info.yaml from template...")
            catalog_content = render_template(TEMPLATE_PATHS["catalog-info.yaml"], {"repo_name": repo_name})
            with open(catalog_path, "w") as f:
                f.write(catalog_content)
        # Create docs/index.md
        print(f"Creating index.md...")
        generate_index_md_from_summary(repo_summary, docs_dir)
    if __name__ == "__main__":
        import sys
        if len(sys.argv) != 3:
            print("Usage: python generate_full_docs.py /path/to/repo-summary.json /path/to/repo")
            sys.exit(1)
        generate_all_docs(sys.argv[1], sys.argv[2])

     Step 5: Create agent/llm-client/llm_client.py

    llm_client.py is a simple wrapper around HuggingFace Transformers that handles:

    • Loading the selected model (microsoft/phi-2) locally.
    • Setting up a text-generation pipeline.
    • Sending prompts and returning generated documentation.

    It expects your HuggingFace token (HUGGINGFACE_TOKEN) to be set in the environment.

    from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
    import os
    class LLMClient:
        def __init__(self, model_id="microsoft/phi-2"):
            print(f"Loading model: {model_id}...")
            token = os.getenv("HUGGINGFACE_TOKEN")
            if token is None:
                raise RuntimeError("Missing HUGGINGFACE_TOKEN environment variable.")
            self.tokenizer = AutoTokenizer.from_pretrained(
                model_id,
                token=token,
                trust_remote_code=True
            )
            self.model = AutoModelForCausalLM.from_pretrained(
                model_id,
                device_map="auto",
                trust_remote_code=True,
                token=token
            )
            self.pipe = pipeline(
                "text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device_map="auto",
                do_sample=True,
                temperature=0.7,
                top_p=0.9
            )
        def generate(self, prompt, max_tokens=800):
            print("Generating content from LLM...")
            
            max_model_tokens = 4096  # phi-2 supports up to 4k tokens
            prompt_tokens = len(self.tokenizer(prompt)["input_ids"])
            safe_max_tokens = min(max_tokens, max_model_tokens - prompt_tokens)
            if safe_max_tokens <= 0:
                raise ValueError(f"Prompt too large ({prompt_tokens} tokens)! Max {max_model_tokens} tokens.")
            response = self.pipe(
                prompt,
                max_new_tokens=safe_max_tokens
            )
            generated_text = response[0]["generated_text"]
            if prompt in generated_text:
                generated_text = generated_text.replace(prompt, "").strip()
            return generated_text
    if __name__ == "__main__":
        client = LLMClient()
        test_prompt = "Write a detailed 'Getting Started' guide for a Kubernetes deployment."
        output = client.generate(test_prompt)
        print("\n[OUTPUT]\n")
        print(output)

     Step 6: Create agent/llm-client/prompt_builder.py

    prompt_builder.py constructs a carefully designed prompt that tells the LLM exactly what the project is about. It keeps the prompt tight and strict to avoid unnecessary output or hallucination.

    def build_prompt_for_file(repo_summary):
        repo_name = repo_summary.get('repo_name', 'Unnamed Project')
        languages = ", ".join(repo_summary.get('languages_detected', [])) or "Unknown"
        extracted_docs = repo_summary.get('extracted_documents', {})
        sample_content = "\n\n".join(
            f"### {path}:\n{content[:300]}" for path, content in list(extracted_docs.items())[:2]
        )
        prompt = f"""
    You are a technical documentation generator.
    Below is some extracted project information:
    ---
    Project Name: {repo_name}
    Languages Used: {languages}
    Sample Extracted Content:
    {sample_content}
    ---
    Ignore everything above.
    Now output only a clean final Markdown file, with the following structure:
    # {repo_name} Documentation
    ## Overview
    (Brief description.)
    ## Contents
    - Getting Started
    - Architecture
    - Deployment Guide
    - Testing
    - Troubleshooting
    ## Getting Started
    ## Architecture
    ## Deployment Guide
    ## Testing
    ## Troubleshooting
    Important:
    - Only output Markdown.
    - No comments.
    - No instructions.
    - No filler text at the end.
    - No "file generated" messages.
    - Start at `# {repo_name} Documentation`.
    - End after the Troubleshooting section.
    Now start writing the final Markdown.
    """
        return prompt

     Step 7: Create agent/llm-client/doc_writer.py

    doc_writer.py is responsible for cleaning the LLM's generated Markdown (removing junk, unfinished code blocks, etc.) and saving the final cleaned content into the correct docs/ folder. This guarantees that only polished, valid TechDocs are written into the repository.

    import os
    import re
    def clean_generated_markdown(content):
        """
        Cleans LLM output: removes trailing junk like extra code blocks or leftover prompts.
        """
        if content.count("```") > 2:
            parts = content.split("```")
            content = parts[0]  # Keep only before first block ends
        junk_phrases = [
            "The docs/index.md file has been generated",
            "You have completed",
            "The following structure was created",
            "This project demonstrates",
        ]
        for phrase in junk_phrases:
            if phrase in content:
                content = content.split(phrase)[0].strip()
        return content.strip()
    def save_doc(base_path, filename, content):
        os.makedirs(base_path, exist_ok=True)
        filepath = os.path.join(base_path, filename)
        
        cleaned_content = clean_generated_markdown(content)
        
        with open(filepath, "w", encoding="utf-8") as f:
            f.write(cleaned_content)

    That completes the repo-scanner/ folder setup.

    Step 8: Create the templates/ folder

    The templates/ folder holds starter files for generating valid TechDocs. These templates are filled dynamically with the repository name during doc generation.

    templates/catalog-info.yaml.tpl:

    apiVersion: backstage.io/v1alpha1
    kind: Component
    metadata:
      name: '{{ repo_name }}'
      description: 'Documentation for the {{ repo_name }} project.'
      annotations:
        backstage.io/techdocs-ref: dir:.
    spec:
      type: service
      owner: user:default/your-team
      lifecycle: production

    templates/mkdocs.yaml.tpl:

    site_name: '{{ repo_name }} Documentation'
    nav:
      - Home: index.md
      # - Getting Started: getting-started.md
      # - Architecture: architecture.md
      # - Deployment Guide: deployment-guide.md
      # - Testing: testing.md
      # - Troubleshooting: troubleshooting.md
    plugins:
      - techdocs-core

    templates/index.md.tpl:

    # {{ repo_name }} Documentation
    Welcome to the documentation for **{{ repo_name }}**!
    ## Overview
    Provide a brief description of what this project does.
    ## Contents
    - [Getting Started](getting-started.md)
    - [Architecture](architecture.md)
    - [Deployment Guide](deployment-guide.md)
    - [Testing](testing.md)
    - [Troubleshooting](troubleshooting.md)

    Now your entire templates/ folder is complete, too! Now that your agent is fully set up, you can run it with a single command:

    bash runner.sh https://github.com/Fortune-Ndlovu/ML

    This will:

    • Clone the target repo.
    • Scan the codebase and extract relevant context.
    • Generate full TechDocs using an LLM.
    • Commit the results.
    • Create a pull request automatically.

    Figure 1 shows a real output example.

    The AI Agent generates a full TechDocs pull request with all required files, ready to merge
    Figure 1: The AI agent generates a full TechDocs pull request with all required files, ready to merge. View it live at: https://github.com/Fortune-Ndlovu/ML/pull/21/files 

    You can find my experimental concept here: https://github.com/Fortune-Ndlovu/techdocs-ai-agent/tree/main

    Conclusion

    Once your pull request is merged, you can register the repository as a component in your Developer Hub either manually through the UI or automatically using the register_component.sh script, depending on your infrastructure setup. What we've built here is a working proof-of-concept that demonstrates how AI can bridge raw source code and production-ready documentation with zero manual authoring. This agent captures structure, extracts intent, and generates standardized TechDocs all in one flow. It's a glimpse into what's possible when you combine LLMs with Developer Hub pipelines, and you’re free to extend, adapt, or fully integrate this into your own internal workflows to automate documentation and component onboarding at scale.

    Explore more topics:

    • Achieve more with less using Red Hat Developer Hub's self-service features
    • How to template AI software in Red Hat Developer Hub
    • LLMs and Red Hat Developer Hub: How to catalog AI assets
    • How building workbenches accelerates AI/ML development
    • How Developer Hub and OpenShift AI work with OpenShift

    Related Posts

    • Achieve more with less using Red Hat Developer Hub's self-service features

    • How to template AI software in Red Hat Developer Hub

    • LLMs and Red Hat Developer Hub: How to catalog AI assets

    • How building workbenches accelerates AI/ML development

    • How Developer Hub and OpenShift AI work with OpenShift

    Recent Posts

    • GuideLLM: Evaluate LLM deployments for real-world inference

    • Unleashing multimodal magic with RamaLama

    • Integrate Red Hat AI Inference Server & LangChain in agentic workflows

    • Streamline multi-cloud operations with Ansible and ServiceNow

    • Automate dynamic application security testing with RapiDAST

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue