Skip to main content
Redhat Developers  Logo
  • Products

    Platforms

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat AI
      Red Hat AI
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • View All Red Hat Products

    Featured

    • Red Hat build of OpenJDK
    • Red Hat Developer Hub
    • Red Hat JBoss Enterprise Application Platform
    • Red Hat OpenShift Dev Spaces
    • Red Hat OpenShift Local
    • Red Hat Developer Sandbox

      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Secure Development & Architectures

      • Security
      • Secure coding
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • Product Documentation
    • API Catalog
    • Legacy Documentation
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

A comparison of ActiveMQ and Kafka

February 16, 2023
Michael Thirion
Related topics:
Kafka
Related products:
Streams for Apache Kafka

Share:

Many times, I’ve helped customers choose between Red Hat AMQ Broker and Red Hat AMQ Streams. Red Hat AMQ Broker is a messaging solution based on the upstream Apache ActiveMQ Artemis project. Red Hat AMQ Streams, on the other hand, is a data streaming platform based on the combination of the upstream Apache Kafka and Strimzi projects.

We could perform a thorough feature-to-feature comparison to decide between those two. Instead, I will provide an alternative view from the perspective of the philosophy behind those two initiatives.

Pushing messages versus pulling events

Apache ActiveMQ Artemis exposes open interfaces and open protocols. The client applications can exchange information with the server through JMS, AMQP, or MQTT. As a consequence, those client applications can be written in multiple languages such as Java, .NET, JavaScript, and Python. So, the client applications send messages to the server, as depicted in Figure 1.

A diagram illustrating client applications sending messages using an ActiveMQ Server.
Figure 1. Client applications send messages through the ActiveMQ Server.

 

On the other hand, Apache Kafka uses its own protocol. Only clients using the Kafka API can interact with it. Therefore, here, it's rather the server that will get information from external systems (Figure 2). This opposite approach changes from the concept of messages to the concept of events.

A diagram illustrating the Kafka client/server solution extracting events from systems.
Figure 2. The Kafka-based solution extracting events from systems.

Quality of service

Considering data as events rather than messages has led to a different way of defining certain responsibilities. Kafka will query data from external systems and store them for later consumption. It will not take any responsibility for how to interpret the data or for determining its importance. This responsibility will be left to the consumers.

ActiveMQ, on the other hand, will be requested by an external system to carry the data for it and will implicitly accept some responsibility for handling the message with a proper quality of service.  

We can understand that difference easily if we consider the exactly-once delivery quality of service. This is achievable with both technologies. But on one hand, it will be guaranteed by the server, while on the other hand, it will be up to the consumer to enforce it. Even though there are some experimental components aimed at bringing the concept of transactions to Kafka, we already know from the CAP theorem that it will have to leave behind either partitioning or high availability.

To go one step further, Kafka will not even ensure the data is safely stored. The data will be sent to the cache, which will eventually flush it to disk. Alternatively, ActiveMQ performs synchronous writing to ensure acknowledged data can never be lost.

Clustering

With ActiveMQ, the consumer doesn’t have to be connected exactly where the message is produced. The proper routing of the message is another responsibility taken by the server. It’s the same principle as having postmen to ensure the delivery of the mail to the right addresses.

As a consequence, if the clustering feature can indeed provide an increase in the inbound throughput, it is usually accompanied by a decrease in the outbound latency due to the hops the data need to cross to reach the right consumers over the cluster (Figure 3).

A diagram showing an ActiveMQ cluster distribution across three nodes.
Figure 3. ActiveMQ clustering distribution with producers and consumers on different nodes.

 

In the case of Kafka, the server doesn’t take any responsibility for ensuring that events are sent to the proper destination. Instead, it will help the client applications willing to consume an event to connect to the node where the event is located (Figure 4), which guarantees both maximum throughput and minimum latency. Here, that would be closer to acting as the post office.

A diagram showing a Kafka cluster distribution across three nodes, resulting in the producer and the consumer connecting to the same node, where the partition leader is located..
Figure 4. Kafka clustering distribution results in the producer and the consumer being connected to the same node, where the partition leader is located.

Is Kafka better than ActiveMQ?

It is true that ActiveMQ doesn’t fit with the cloud as well as Kafka does. But it doesn’t mean that there are no longer any use cases for ActiveMQ. The cloud is not only a change of technology but also a change of paradigm. Today, we might still have more use cases for ActiveMQ than for Kafka, as there are still plenty of business use cases requiring guaranteed deliveries of information.  Actually, comparing ActiveMQ to Kafka is not very far from comparing a relational database to a NoSQL one.

Last updated: August 14, 2023

Related Posts

  • HTTP-based Kafka messaging with Red Hat AMQ Streams

  • Red Hat simplifies transition to open source Kafka with new service registry and HTTP bridge

  • Architectural messaging solutions with Apache ActiveMQ Artemis

  • OpenShift for Developers: Set Up a Full Cluster in Under 30 Minutes

Recent Posts

  • Integrate incident detection with OpenShift Lightspeed via MCP

  • One model is not enough, too many models is hard: Technical deep dive

  • What's new in Ansible Automation Platform 2.6

  • Quantum computing 101 for developers

  • LLM Compressor 0.8.0: Extended support for Qwen3 and more

What’s up next?

Red Hat AMQ Broker Cheat Sheet card

This cheat sheet covers the most common commands to install, deploy, administer, and operate a messaging system based on AMQ Broker.

Get the cheat sheet
Red Hat Developers logo LinkedIn YouTube Twitter Facebook

Platforms

  • Red Hat AI
  • Red Hat Enterprise Linux
  • Red Hat OpenShift
  • Red Hat Ansible Automation Platform
  • See all products

Build

  • Developer Sandbox
  • Developer Tools
  • Interactive Tutorials
  • API Catalog

Quicklinks

  • Learning Resources
  • E-books
  • Cheat Sheets
  • Blog
  • Events
  • Newsletter

Communicate

  • About us
  • Contact sales
  • Find a partner
  • Report a website issue
  • Site Status Dashboard
  • Report a security problem

RED HAT DEVELOPER

Build here. Go anywhere.

We serve the builders. The problem solvers who create careers with code.

Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

Sign me up

Red Hat legal and privacy links

  • About Red Hat
  • Jobs
  • Events
  • Locations
  • Contact Red Hat
  • Red Hat Blog
  • Inclusion at Red Hat
  • Cool Stuff Store
  • Red Hat Summit
© 2025 Red Hat

Red Hat legal and privacy links

  • Privacy statement
  • Terms of use
  • All policies and guidelines
  • Digital accessibility

Report a website issue