Skip to main content
Redhat Developers  Logo
  • Products

    Platforms

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat AI
      Red Hat AI
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • View All Red Hat Products

    Featured

    • Red Hat build of OpenJDK
    • Red Hat Developer Hub
    • Red Hat JBoss Enterprise Application Platform
    • Red Hat OpenShift Dev Spaces
    • Red Hat OpenShift Local
    • Red Hat Developer Sandbox

      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Secure Development & Architectures

      • Security
      • Secure coding
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • Product Documentation
    • API Catalog
    • Legacy Documentation
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Performance Analysis of Docker on Red Hat Enterprise Linux 7

August 19, 2014
Jeremy Eder Chris Murphy
Related topics:
Containers
Related products:
Red Hat Enterprise Linux

Share:

    Containers introduce some intriguing usability, packaging and deployment patterns. These new patterns offer the potential to effect massive improvements to the enterprise application development and operations specialties. Containers also offer the promise of bare metal performance while offering some amount of isolation as well.

    But can they deliver on that promise ?

    Since earlier this year, the Performance Engineering Group at Red Hat has run huge amounts of microbenchmarks, benchmarks and application workloads in Docker containers. The output of that effort has been a steady stream of lessons learned and advice/guidance given to our product architects and developers.

    • How dense can we go ?
    • How fast can it go ?
    • Are these defaults "sane" ?
    • What NOT to do...etc.

    Disclaimer: as anyone who has worked with Docker knows, it's a project under heavy development. I mention that because this blog post and video includes code snippets and observations that are tied to specific experiments and Docker/kernel versions. YMMV, the answer of course is "it depends", and so on.

    Performance tests we've pointed at Docker containers

    We've done a whole bunch of R&D testing with bleeding edge, "niche" hardware and software to push and pull Docker containers in completely unnatural ways. Based on our choice of benchmarks, you can see that the initial approach was to calculate the precise overhead of containers as compared to bare metal (Red Hat plans on developing bare metal container deployment with the Project Atomic stack).  Of course we are also gathering numbers with VMs to compare and containers in VMs (which might be the end-game, who knows...) via OpenStack etc.

    Starting at the core, and working our way to the heaviest, pushing all the relevant subsystems to their limits:

    • In-house timing syscall benchmarks (including vdso), libMicro, cyclictest
    • Linpack, single and double precision, Streams
    • Various incantations of sysbench
    • iozone, smallfile, spinning disk, ssd and NAND flash
    • netperf on 10g and 40g, SR-IOV (pipework)
    • OpenvSwitch with VXLAN offload-capable NICs
    • Traditional "large" applications, i.e. business analytics and databases
    • Addressing single-host vertical scalability limits by fixing the Linux kernel and fiddling some bits in Docker.
    • Using OpenvSwitch to get past the spanning-tree limitations of # of ports per bridged-interface.
    • Scale and performance testing of various storage drivers andnetwork topologies.

    All of these mine-sweeping experiments (lots more to come!) have allowed us to find and fix plenty of issues and document best-practices that we hope will lead to a great customer experience.

    Docker Meetup

    On July 31st, Red Hat hosted a Meetup event at our headquarters in Raleigh, NC.  I was fortunate enough to be able to present to a great group of DevOps folks on performance testing Docker containers.  Quite an enthusiastic and thoughtful audience!

    I spoke at length about what we've seen from a container performance standpoint, and demo'd effectiveness of cgroups memory constraints on a container and how we've integrated tests of any kind into a git-driven workflow.

    All of the reproducer code, Dockerfiles etc that were used in the demo are available on Github, the slides are here and the video is here:

    (apologies for audio problems from 48:40-52:38)

    It's not very often that a new technology comes up that creates a whole new column for performance characterization. But containers have done just that, and so it's been quite the undertaking. There are still many tests variations to run, but so far we're encouraged both by what we're seeing internally as well as feedback from customers and partners participating in our beta program.

    That said, I have to keep reminding myself that performance isn't always the first concern for everyone (*gasp*). And that the packaging, development and deployment workflow that breaks the ties between host userspace and container userspace are equally impressive.

    Last updated: February 23, 2024

    Recent Posts

    • How to enable Ansible Lightspeed intelligent assistant

    • Why some agentic AI developers are moving code from Python to Rust

    • Confidential VMs: The core of confidential containers

    • Benchmarking with GuideLLM in air-gapped OpenShift clusters

    • Run Qwen3-Next on vLLM with Red Hat AI: A step-by-step guide

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue