Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

      • Red Hat OpenShift AI
      • Red Hat Enterprise Linux AI
    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Open Data Hub 1.1.0 provides new JupyterHub capabilities and more

July 26, 2021
Juana Nakfour Landon LaSmith
Related topics:
Artificial intelligenceDevOpsOpen source
Related products:
Red Hat OpenShiftRed Hat OpenShift Container Platform

Share:

    Open Data Hub is an end-to-end AI/ML platform that runs and installs on Red Hat OpenShift 4.x. It provides components for every phase of the end-to-end AI/ML process, including data ingestion, model development, and production model serving and monitoring.

    The Open Data Hub team recently released Open Data Hub 1.1.0. In this new release, the community focused on hardening JupyterHub deployment, providing a new and improved JupyterHub Spawner UI, integrating the Open Data Hub dashboard with OpenShift's OAuth server, and adding a Kubeflow 1.3 OpenShift distribution stack along with new components such as Trino and Red Hat OpenShift Pipelines. Open Data Hub 1.1.0 also comes with an Operator Level 4 verification indicating "Deep Insight" status after enabling more monitoring and logging.

    JupyterHub

    The Open Data Hub community focused on improving the JupyterHub user experience from many angles. First, the team created a new Spawner user interface as shown in Figure 1. Users can easily select the appropriate notebook image to launch and specify environment variables such as access keys and passwords hidden in created secrets.

    Open Data Hub JupyterHub Spawner

    Figure 1: The Open Data Hub JupyterHub Spawner.

    The team also added the ability to customize and specify JupyterHub PostgreSQL parameters such as passwords and tokens in a secret, which lets the user secure access to the database. Users also can add groups of users to JupyterHub and specify them as administrators or users for JupyterHub access by creating the following ConfigMap with a comma-separated list of group names:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      labels:
        app: jupyterhub
      name: jupyterhub-default-groups-config
    data:
      admin_groups: ""
      allowed_groups: ""

    The Open Data Hub community also focused on migrating all notebook images to JupyterLab. We provide two Jupyter notebook images in this release: Minimal Python and Standard Data Science. We also added UBI-based CUDA 11.0.3-enabled notebook images with Python 3.8.

    Open Data Hub operator

    The Open Data Hub operator now supports Operator Level 4: Deep Insights capabilities. This update includes the following enhancements:

    • All KfDef objects will report installation status in the .status block of the custom resource. In the block, you will now be able to review the current status of the KfDef deployment to determine whether it is installed correctly or what error is blocking the installation.
    • Support for Prometheus metrics for the operator, JupyterHub server, and Jupyter user notebooks. In addition, there are now Grafana dashboards that will display relevant information for the JupyterHub server and user notebook pods like CPU, memory, and PVC utilization.

    In addition, we added two new Operator Lifecycle Manager (OLM) channels for stable and rolling releases. So that we can better support users who want the latest updates to the operator and manifests, we are deprecating the current beta channel and adding two new channels:

    • stable: This channel replaces the current beta channel and includes the most recent minor stable release. This channel will be for those users that are comfortable with a specific Open Data Hub release and prefer to only upgrade between minor releases.

    • rolling: This channel includes the most recent builds of the operator and manifests. Updates to this channel will occur more frequently than the stable release and will include the most recent updates available in the operator and odh-manifests repository.

    There will be no future releases under the beta channel. If you have deployed the operator under this channel, you will need to manually change to stable or rolling to receive future updates and prevent any errors in the operator deployment when beta is deleted.

    Kubeflow 1.3

    Open Data Hub 1.1.0 comes with the latest release of Kubeflow, version 1.3. In this version, the team created the OpenShift distribution that includes many Kubeflow components such as Kubeflow Pipelines, KFServing, Katib, PyTorch and TensorFlow distributed training, and Jupyter notebooks. As part of the distribution, Open Data Hub also provides example KfDef resources to install these components on OpenShift using the Open Data Hub operator.

    Open Data Hub dashboard

    In this release we added an option to enable authentication with Red Hat OpenShift's OAuth server, giving users an option to enable secure authentication to the dashboard. To enable this feature, users will need to add the authentication overlay as shown here:

    - kustomizeConfig:
         overlays:
           - authentication
         repoRef:
           name: manifests
           path: odh-dashboard
      name: odh-dashboard

    This will prompt users to enter their OpenShift username and password before they access the dashboard (see Figure 2).

    Open Data Hub Dashboard Authentication

    Figure 2: Open Data Hub dashboard authentication.

    Trino

    Open Data Hub 1.1.0 comes with a new open source component called Trino. Trino is a fast distributed SQL query engine that can integrate with multiple data sources such as S3, SQL databases, and NoSQL databases. To enable the installation of Trino, you can add the following to your KfDef resource:

    - kustomizeConfig:
         parameters:
           - name: s3_endpoint_url
             value: s3.odh.com
           - name: s3_credentials_secret
             value: s3-credentials
        repoRef:
          name: manifests
          path: trino
      name: trino

    At the moment, the only way to interface with Trino is to use an SQL client such as DBeaver, the Trino command-line interface (CLI), or the Python Client for Trino. In future releases of Open Data Hub we plan to integrate Superset and Hue with Trino so users can use SQL queries for data exploration and visualization.

    OpenShift Pipelines

    Open Data Hub now supports the installation of Red Hat OpenShift Pipelines along with all of the required custom resources to enable a workflow supported by Tekton pipelines. With OpenShift Pipelines, you can start building a complete end-to-end CI/CD pipeline that can be used to build, push, and deploy your AI/ML workload for production use.

    You can enable OpenShift Pipelines as part of your Open Data Hub deployment by adding the following to your KfDef resource:

     - kustomizeConfig:       
          parameters:         
            - name: namespace           
              value: openshift-operators       
          repoRef:         
            name: manifests         
            path: openshift-pipelines/cluster     
       name: openshift-pipelines

    To learn more about OpenShift Pipelines, review the documentation on Understanding OpenShift Pipelines.

    Upcoming Open Data Hub releases

    For the next Open Data Hub minor release, the community is working on many interesting and exciting new functionalities and tools. The team plans to add JupyterHub enhancements such as the ability to create and add custom notebook images. Multitenancy support for Kubeflow and integration with authentication tools are also on the roadmap, along with integrating Kubeflow with Red Hat OpenShift Service Mesh and Red Hat OpenShift Serverless. The community is also working on expanding the Open Data Hub community guidelines—for example, adding guidelines for proposing new components and features to the Open Data Hub project.

    For the latest information on the Open Data Hub project, please visit opendatahub.io and join our community bi-weekly meetings.

    Last updated: June 14, 2023

    Related Posts

    • AI/ML pipelines using Open Data Hub and Kubeflow on Red Hat OpenShift

    • From notebooks to pipelines: Using Open Data Hub and Kubeflow on OpenShift

    • A development roadmap for Open Data Hub

    Recent Posts

    • How Kafka improves agentic AI

    • How to use service mesh to improve AI model security

    • How to run AI models in cloud development environments

    • How Trilio secures OpenShift virtual machines and containers

    • How to implement observability with Node.js and Llama Stack

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue