Skip to main content
Redhat Developers  Logo
  • Products

    Platforms

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat AI
      Red Hat AI
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • View All Red Hat Products

    Featured

    • Red Hat build of OpenJDK
    • Red Hat Developer Hub
    • Red Hat JBoss Enterprise Application Platform
    • Red Hat OpenShift Dev Spaces
    • Red Hat OpenShift Local
    • Red Hat Developer Sandbox

      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Secure Development & Architectures

      • Security
      • Secure coding
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • Product Documentation
    • API Catalog
    • Legacy Documentation
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Programmer's Model of a Processor Executing Instructions Versus Reality

February 22, 2016
William Cohen
Related topics:
Containers
Related products:
Red Hat OpenShift

Share:

    Everything on a computer system eventually ends up being run as a sequence of machine instructions. People want to keep things simple and understandable even if that is not really the way that things work. The simple programmer's model of a Reduced Instruction Set Computer (RISC) processor executing those machine language instruction is a loop of the following steps each step finished before moving on the the next step:

    1. Fetch instruction
    2. Decode instruction and fetch register operands
    3. Execute arithmetic computation
    4. Possible memory access (read or write)
    5. Writeback results to register

    The steps above are simple. However, even the simplest step on the processor takes a minimum of one clock cycle and some of the above steps may take multiple clock cycles. On a machine that has a 2GHz (2x10^9 cycles per second) clock each clock cycle is 0.5 nanoseconds. Thus, it would take 2.5 nanoseconds to execute one instruction, a maximum of only 400 million instructions per second. Like the astronomer Carl Sagan you want to say your processor is excuting "billions and billions" of instructions per second, not mere millions.

    Originally, processors designers had a very limited budget for transistors, so the processors pretty much implemented the above steps as simply as possible. However, as designers were allow to use more transistors they realized that they had some flexibility in how the processors executed the instructions. They only needed to make it appear that the processor followed those steps. Behind the scene the processor could take all sort of crazy optimizations and shortcuts, so long as the results looked the same as the simple model to the programmer.

    Ideally, the optimizations and shortcuts taken by the processor are transparent to the application program. Most of the time that is the case; the program just runs faster on that processor due to those hardware enhancements. However, there are cases where the application developer can see performance is poor. This series of blog entries will talk about the various performance optimizations that processors implement, how they work, the pitfalls, ways to identify whether there is a problem, and how the developer might resolve it.

    The next blog entry will discuss how processor speed up memory accesses.

    Last updated: September 19, 2023

    Recent Posts

    • Profiling vLLM Inference Server with GPU acceleration on RHEL

    • Network performance in distributed training: Maximizing GPU utilization on OpenShift

    • Clang bytecode interpreter update

    • How Red Hat has redefined continuous performance testing

    • Simplify OpenShift installation in air-gapped environments

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Platforms

    • Red Hat AI
    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform
    • See all products

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue