Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

      • Red Hat OpenShift AI
      • Red Hat Enterprise Linux AI
    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Exploratory Performance Analysis with Performance Co-Pilot [video]

November 19, 2013
Nathan Scott
Related topics:
JavaDevOps

Share:

    Investigating performance in a complex system is a fascinating undertaking.  When that system spans multiple, closely-cooperating machines and has open-ended input sources (shared storage, or faces the Internet, etc) then the degree of difficulty of such investigations ratchets up quickly.  There are often many confounding factors, with many things going on all at the same time.

    The observable behaviour of the system as a whole can be frequently changing even while at a micro level things may appear the same.  Or vice-versa - the system may appear healthy, average and 95th percentile response times are in excellent shape, yet a small subset of tasks are taking an unusually large amount of time to complete, just today perhaps.  Fascinating stuff!

    Let's first consider endearing characteristics of the performance tools we'd want to have at our disposal for exploring performance in this environment. 

    We are talking production systems of course, so they must be light-weight in all dimensions (processor, memory, storage, networking) and being always-on is a requirement.  They'll be operating under duress, 24x7.  When other components are failing around these tools, we want them to keep doing their thing (complex systems often exhibit cascading failures); the tools should be operational even when three of four engines fail, there's no hydraulic pressure, and a plume of thick black smoke is trailing behind the system!

    We want them to be able to give us data immediately, and be able to save data for later playback and offline analysis.  We do not want less tangible issues like financial cost, licensing, lack of security, lack of openness or similar constraints to give us pause when deploying the tools to all the cooperating hosts in our complex system.

    Perhaps most importantly of all - they must provide access to all of the many metrics from the many different domains (components) of these complex systems - because combinations of factors from different components and different hosts might be (will be!) contributing to today's crisis.

    With this basic tooling in place, we then move up a level and want these tools to be able to play nicely with higher level tools (monitoring and reporting systems, data warehouses, analytics, capacity planning or modelling tools).  That means ideally APIs for extracting data, and tools for producing easily-consumed data for others to build on and analyse further.

    This is the set of requirements underpinning the Performance Co-Pilot (PCP) toolkit.

    So, with this in mind, let us turn our focus back to the topic at hand - how can we perform simple exploratory performance analysis in complex production systems using this not-so-hypothetical-after-all set of tools.  What do we even mean by "exploratory" in this context?

    When confronted with a need to analyse performance we're often starting with an initial observation about the system - poor response time of an interactive web application, perhaps.  We can explore available data and come up with a series of hypotheses, informed by our observations.

    To illustrate the approach, and introduce some of the concepts and tools that are part of the Performance Co-Pilot, the screencast below (under 12 minutes) shows the exploration of some data from two machines in a loosely-coupled cluster - a storage server and an application server.  This is production system data, with some names changed to protect the innocent.  For simplicity, many of the machines that complete this (complex) system are not presented.

    http://youtu.be/zrAjevr8_Ds

    You can find more information, books and other Performance Co-Pilot resources on the project website.  In Fedora and EPEL, look for the "pcp", "pcp-gui" and "pcp-doc" RPMs.

    http://oss.sgi.com/projects/pcp

    Recent Posts

    • AI meets containers: My first step into Podman AI Lab

    • Live migrating VMs with OpenShift Virtualization

    • Storage considerations for OpenShift Virtualization

    • Upgrade from OpenShift Service Mesh 2.6 to 3.0 with Kiali

    • EE Builder with Ansible Automation Platform on OpenShift

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue