Skip to main content
Redhat Developers  Logo
  • Products

    Featured

    • Red Hat Enterprise Linux
      Red Hat Enterprise Linux Icon
    • Red Hat OpenShift AI
      Red Hat OpenShift AI
    • Red Hat Enterprise Linux AI
      Linux icon inside of a brain
    • Image mode for Red Hat Enterprise Linux
      RHEL image mode
    • Red Hat OpenShift
      Openshift icon
    • Red Hat Ansible Automation Platform
      Ansible icon
    • Red Hat Developer Hub
      Developer Hub
    • View All Red Hat Products
    • Linux

      • Red Hat Enterprise Linux
      • Image mode for Red Hat Enterprise Linux
      • Red Hat Universal Base Images (UBI)
    • Java runtimes & frameworks

      • JBoss Enterprise Application Platform
      • Red Hat build of OpenJDK
    • Kubernetes

      • Red Hat OpenShift
      • Microsoft Azure Red Hat OpenShift
      • Red Hat OpenShift Virtualization
      • Red Hat OpenShift Lightspeed
    • Integration & App Connectivity

      • Red Hat Build of Apache Camel
      • Red Hat Service Interconnect
      • Red Hat Connectivity Link
    • AI/ML

      • Red Hat OpenShift AI
      • Red Hat Enterprise Linux AI
    • Automation

      • Red Hat Ansible Automation Platform
      • Red Hat Ansible Lightspeed
    • Developer tools

      • Red Hat Trusted Software Supply Chain
      • Podman Desktop
      • Red Hat OpenShift Dev Spaces
    • Developer Sandbox

      Developer Sandbox
      Try Red Hat products and technologies without setup or configuration fees for 30 days with this shared Openshift and Kubernetes cluster.
    • Try at no cost
  • Technologies

    Featured

    • AI/ML
      AI/ML Icon
    • Linux
      Linux Icon
    • Kubernetes
      Cloud icon
    • Automation
      Automation Icon showing arrows moving in a circle around a gear
    • View All Technologies
    • Programming Languages & Frameworks

      • Java
      • Python
      • JavaScript
    • System Design & Architecture

      • Red Hat architecture and design patterns
      • Microservices
      • Event-Driven Architecture
      • Databases
    • Developer Productivity

      • Developer productivity
      • Developer Tools
      • GitOps
    • Secure Development & Architectures

      • Security
      • Secure coding
    • Platform Engineering

      • DevOps
      • DevSecOps
      • Ansible automation for applications and services
    • Automated Data Processing

      • AI/ML
      • Data Science
      • Apache Kafka on Kubernetes
      • View All Technologies
    • Start exploring in the Developer Sandbox for free

      sandbox graphic
      Try Red Hat's products and technologies without setup or configuration.
    • Try at no cost
  • Learn

    Featured

    • Kubernetes & Cloud Native
      Openshift icon
    • Linux
      Rhel icon
    • Automation
      Ansible cloud icon
    • Java
      Java icon
    • AI/ML
      AI/ML Icon
    • View All Learning Resources

    E-Books

    • GitOps Cookbook
    • Podman in Action
    • Kubernetes Operators
    • The Path to GitOps
    • View All E-books

    Cheat Sheets

    • Linux Commands
    • Bash Commands
    • Git
    • systemd Commands
    • View All Cheat Sheets

    Documentation

    • API Catalog
    • Product Documentation
    • Legacy Documentation
    • Red Hat Learning

      Learning image
      Boost your technical skills to expert-level with the help of interactive lessons offered by various Red Hat Learning programs.
    • Explore Red Hat Learning
  • Developer Sandbox

    Developer Sandbox

    • Access Red Hat’s products and technologies without setup or configuration, and start developing quicker than ever before with our new, no-cost sandbox environments.
    • Explore Developer Sandbox

    Featured Developer Sandbox activities

    • Get started with your Developer Sandbox
    • OpenShift virtualization and application modernization using the Developer Sandbox
    • Explore all Developer Sandbox activities

    Ready to start developing apps?

    • Try at no cost
  • Blog
  • Events
  • Videos

Shenandoah GC in JDK 13, Part 3: Architectures and operating systems

July 1, 2019
Roman Kennke
Related topics:
Java

Share:

    In this series, I've been covering new developments of Shenandoah GC coming up in JDK 13. In part 1, I looked at the switch to load reference barriers, and, in part 2, I looked at plans for eliminating an extra word per object. In this article, I'll look at a new architecture and a new operating system that Shenandoah GC will be working with.

    Solaris

    BellSoft recently contributed a change that allowed Shenandoah to build and run on Solaris. Shenandoah itself has no operating system-specific code in it; therefore, it's relatively easy to port to new operating systems. In this case, it mostly amounts to a batch of fixes to make the Solaris compiler happy, like removing a trailing comma in enums.

    One notable gotcha we encountered was with Solaris 10. Contrary to what later versions of Solaris do—and what basically all other relevant operating systems do—Solaris 10 maps user memory to upper address ranges (e.g., to addresses starting with 0xff... instead of 0x7f). Other operating systems reserve the upper half of the address space to kernel memory.

    This approach conflicted with an optimization of Shenandoah's task queues, which would encode pointers assuming it has some spare space in the upper address range. It was easy enough to disable via build-time-flag, and Aleksey Shipilev did that. The fix is totally internal to Shenandoah GC and does not affect the representation of Java references in heap. With this change, Shenandoah can be built and run on Solaris 10 and newer (and possibly older, but we haven't tried). This is not only interesting for folks who want Shenandoah to run on Solaris, but also for us, because it requires the extra bit of cleanliness to make non-mainline toolchains happy.

    The changes for Solaris support are already in JDK 13 development repositories and are already backported to Shenandoah's JDK 11 and JDK 8 backports repositories.

    x86_32

    Shenandoah used to support x86_32 in "passive" mode a long time ago. This mode relies only on stop-the-world GC to avoid implementing barriers (basically, it runs Degenerated GC all the time). It was an interesting mode to see the footprint numbers that you can get with uncommits and slimmer native pointers with really small microservice-size VMs. This mode was dropped before integration upstream, because many Shenandoah tests expect all heuristics/modes to work properly, and having the rudimentary x86_32 support was breaking tier1 tests. So, we disabled it.

    Today, we have significantly simplified runtime interface thanks to load reference barriers and elimination of separate forwarding pointer slot, and we can build the fully concurrent x86_32 on top of that. This approach allows us to maintain 32-bit cleanness in Shenandoah code (we have fixed >5 bugs ahead of this change!), and it serves as proof of concept that Shenandoah can be implemented on 32-bit platforms. It is interesting in scenarios where the extra footprint savings are important, such as in containers or embedded systems. The combination of LRB + no more forwarding pointer + 32-bit support gives us the current lowest bounds for a footprint that would be possible with Shenandoah.

    The changes for x86_32-bit support are done and ready to be integrated into JDK 13. However, they are currently waiting for the elimination of forwarding pointer change, which in turn is waiting for a nasty C2 bug fix. The plan is to later backport it to Shenandoah JDK 11 and JDK 8 backports, after the load reference barriers and elimination of forwarding pointer changes have been backported.

    Other architectures and OSes

    With those two additions to OS and architectures support, Shenandoah will soon be available (e.g., known to build and run) on four operating systems: Linux, Windows, MacOS, and Solaris, plus three architectures: x86_64, arm64 and x86_32. Given Shenandoah's design with zero OS-specific code, and not overly complex architecture-specific code, we may be looking at more operating systems or architectures to join the flock in future releases (if anybody finds it interesting enough to implement).

    As always, if you don’t want to wait for releases, you can already have everything and help sort out problems: check out the Shenandoah GC Wiki.

    Read more

    Shenandoah GC in JDK 13, Part 1: Load reference barriers

    Shenandoah GC in JDK 13, Part 2: Eliminating the forward pointer word

    Last updated: June 27, 2019

    Recent Posts

    • AI meets containers: My first step into Podman AI Lab

    • Live migrating VMs with OpenShift Virtualization

    • Storage considerations for OpenShift Virtualization

    • Upgrade from OpenShift Service Mesh 2.6 to 3.0 with Kiali

    • EE Builder with Ansible Automation Platform on OpenShift

    Red Hat Developers logo LinkedIn YouTube Twitter Facebook

    Products

    • Red Hat Enterprise Linux
    • Red Hat OpenShift
    • Red Hat Ansible Automation Platform

    Build

    • Developer Sandbox
    • Developer Tools
    • Interactive Tutorials
    • API Catalog

    Quicklinks

    • Learning Resources
    • E-books
    • Cheat Sheets
    • Blog
    • Events
    • Newsletter

    Communicate

    • About us
    • Contact sales
    • Find a partner
    • Report a website issue
    • Site Status Dashboard
    • Report a security problem

    RED HAT DEVELOPER

    Build here. Go anywhere.

    We serve the builders. The problem solvers who create careers with code.

    Join us if you’re a developer, software engineer, web designer, front-end designer, UX designer, computer scientist, architect, tester, product manager, project manager or team lead.

    Sign me up

    Red Hat legal and privacy links

    • About Red Hat
    • Jobs
    • Events
    • Locations
    • Contact Red Hat
    • Red Hat Blog
    • Inclusion at Red Hat
    • Cool Stuff Store
    • Red Hat Summit
    © 2025 Red Hat

    Red Hat legal and privacy links

    • Privacy statement
    • Terms of use
    • All policies and guidelines
    • Digital accessibility

    Report a website issue