
Pods in the Kubernetes and
OpenShift Cosmos

Kubernetes

- Steering Committee Member
- Co-Chair

- SIG Architecture
- SIG Node
- WG Resource Management (Emeritus)

OpenShift

- Distinguished Engineer @Red Hat
- Member of OpenShift Architecture Team

Application Requirements

1. Developer
2. Imagination
3. Energy

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

Hybrid Cloud

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations
b. Cluster

Cluster
name=home

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations
b. Cluster
c. Ingress

Ingress

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations
b. Cluster (Location)
c. Ingress
d. Services

Services

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations
b. Cluster (Location)
c. Ingress
d. Services
e. Nodes

Nodes

Application Requirements

1. Developer
2. Imagination
3. Energy
4. Hybrid Cloud

a. Operations
b. Cluster (Location)
c. Ingress
d. Services
e. Nodes
f. Pods

Nodes

Pods

But how do Pods actually work?

$ kubectl run -i -t busybox --image=busybox --restart=Never

Network Flow - Client to Control Plane

HTTPS <verb>

HTTPS <verb>

Host: X Host: Master(n)

client apiserverLB

LB

api.foo.com

client apiserver

ListenAndServeTLS
- Authentication

(who is this?)
- Authorization

(who can do what?)

HandleRequest/Response

Kubeconfig
Client CA
Client Cert
Client Key

External Load Balancer

An external load balancer (api.foo.com)
handles all traffic external to cluster.
It balances kube-apiserver traffic across N
hosts.

All end-user API interaction is directed against
the api-server component.

API Server Configuration

Client CA & Serving Certs - ca can be
provided by admin, serving certs can be
provided by admin and configured for SNI

TLS Security Profiles - Cipher Profiles for old,
intermediate, modern per Mozilla, custom
profile definition available for customer specific
cipher lists. TLS 1.2 (by default), 1.3
(configurable)

Allowed CORS Origins - regex hosts allows
access using CORS headers.

Encryption - Resources encrypted in data
store layer

Listen :::6443

https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29

Node (no pods)

HTTPS (WATCH)
unix://var/run/crio.sock
Reconcile <operation>

unix://var/run/crio.sock
Reconcile <operation>

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Filesystem:
/var/lib/kubelet/

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet launches and creates cgroup hierarchy per quality
of service tier. Kubelet watches API server for bound pods
to run. It reconciles local node host to current state in a
constant loop. It interacts with cri-o to determine status of
running containers and image filesystem.

Kubelet to CRI-O communication

HTTPS (WATCH)
unix://var/run/crio.sock
Reconcile <operation>

unix://var/run/crio.sock
Reconcile <operation>

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Filesystem:
/var/lib/kubelet/

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet communicates with cri-o runtime over unix socket.

IMPORTANT
The crio.sock is protected by a SELinux label that is NOT
accessible by default SELinux context for end-user
containers.

SELinux labels for key processes and sockets:
kubelet system_u:system_r:unconfined_service_t:s0
crio system_u:system_r:container_runtime_t:s0
crio.sock system_u:object_r:container_var_run_t:s0
<example user container processes>
system_u:system_r:container_t:s0:c14,c24

Pod - Restricting access by default

HTTPS POST ../pods

Accept / deny

Host: X Host: Master(n)

client apiserverLB

LB

api.foo.com

client apiserver

Admission Control

 Validate and Default Pod
 Against Matching
 Security Context Constraint

Kubeconfig
Client CA
Client Cert
Client Key

OpenShift security feature:

Security Context Constraints (SCC)
Each pod is validated prior to persistence against a set of
constraints that control ability for pod to run privileged,
add/remove capabilities, selinux modes, run as user restrictions,
fs group restrictions, supplemental group restrictions, readonly
rootfs, and volumes allowed for use.

Available out of box (custom profiles are supported)
Anyuid
Hostaccess
Hostmount-anyuid
Hostnetwork
Node-exporter
Nonroot
Privileged
Restricted* (default)

The default SCC denies access to all host features and requires
pods to be run with a UID, and SELinux context that are allocated
to the pod’s namespace in OpenShift. This is the most restrictive
policy and is used by default for authenticated users by default.

Pod
Name: A

<scheduler magic>

Kubelet sees pod - create cgroups

HTTPS (WATCH)

Host: Worker(n)

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet

apiserver kubelet Host Filesystem:
/var/lib/kubelet/

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet sees it should run Pod A. Kubelet creates cgroup
for Pod A under QoS subtree for required resources

Create
Pod
Cgroup

Pod
Name: A

Kubelet sees pod - create host resource

HTTPS (WATCH)

Host: Worker(n)

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet

apiserver kubelet Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet creates pod A etc-hosts file for DNS configuration
Kubelet creates pod A data directories on local host
(emptyDir, etc.)

Create pod
local host
resources

Pod
Name: A

Kubelet sees pod - volumes

HTTPS (WATCH)

Host: Worker(n)

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet

apiserver kubelet Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet waits for volumes to attach and mount for pod from
its spec

Wait for
volumes
to attach
and
mount

Pod
Name: A

Kubelet sees pod - fetch pull secrets

HTTPS GET /secret/...

Host: Worker(n)

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet

apiserver kubelet Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet fetches pull secret associated with pod (if any) used
to pull its container images

Fetch
image
pull
secret
for pod
(if any)

Secret
Name:
secret-1

Kubelet sees pod - sandbox

HTTPS (WATCH)
unix://var/run/crio.sock
CreateSandboxRequest

unix://var/run/crio.sock
CreateSandboxResponse

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Containers
- podA sandbox (podIP) (image=pause)

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- sandbox

- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet request create sandbox for pod under pod cgroup

Sandbox is a container that holds Linux namespace and IP
for all other containers in the pod, it is often referred to as
pause container

Pod
Name: A

Kubelet sees pod - pull image(s)

HTTPS (WATCH)
unix://var/run/crio.sock
PullImage

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Containers
- podA sandbox (podIP) (image=pause)

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- Sandbox
- Container 1 … N

- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet requests runtime to pull images.
Image pull policy protects access to image content.
Policy Options: Always, Never, IfNotPresent
Note: Always ensures rights to use image based on pull
secret credentials.

Pod
Name: A

Secret
Name:
secret-1

Kubelet - create container(s)

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o

unix://var/run/crio.sock
CreateContainer

Pod
Name: A

Container Configuration (Container 1)

Command, Args (to run in the container)
WorkingDir
Envs (env vars for container)
Mounts (mounts available to container)
Devices
LogPath (where logs are stored and rotated)
Stdin/Tty
Resources (derived from pod spec and calculated per container)

- CPU period, quota, shares
- CPUset (cpu, memory)
- Memory limit (bytes)
- HugePage limits (bytes per page size)
- Oom score

Security Context (derived from pod spec)
- Capabilities (Add / drop)
- Privileged (bool)
- Namespace Options
- SelinuxOptions (User, Role, Type, Level)
- RunAsUser, RunAsGroup (uid/gid to run process)
- RunAsUsername (/etc/passwd in image if used)
- ReadonlyRootfs (bool)
- SupplementalGroups
- Seccomp Profile Path (full path to profile file on host)
- NoNewPrivs (bool)
- MaskedPaths (slice of paths masked by runtime)
- ReadonlyPaths (slice of paths masked as readonly)

Each container has a configuration that tells runtime how to
isolate based on pod spec.

Kubelet - start container(s)

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Containers
- podA sandbox (podIP) (image=pause)
- Container 1… N

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- Sandbox
- Container 1 … N

- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet requests runtime to start container.
Each container has a cgroup nested under pod cgroup.
Container is launched based on OCI config provided earlier.

unix://var/run/crio.sock
StartContainer

Pod
Name: A

$ kubectl delete pods <foo>

Kubelet pod deletion - kill containers

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o
Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Containers
- podA sandbox (podIP) (image=pause)
- Container 1… N

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- Sandbox
- Container 1 … N

- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet observes desired state to terminate pod

Pod
Name: A
DeletionTimestamp:
NOW

unix://var/run/crio.sock
KillContainers <graceperiod>

Kubelet pod deletion - stop pod sandbox

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o Host Filesystem
/var/lib/kubelet/pods

- /podA
- /etc-hosts
- /volumes

- secret-1 (tmpfs)
- configMap-1
- ...

Containers
- podA sandbox (podIP) (image=pause)

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice

- /podA.slice
- Sandbox

- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet instructs runtime to remove pods sandbox once
containers terminated.

Pod
Name: A
DeletionTimestamp:
NOW

unix://var/run/crio.sock
StopPodSandbox

Kubelet - purge pod cgroup

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o

Host Filesystem
/var/lib/kubelet/pods

Containers

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet cleans up pod cgroup.

Pod
Name: A
DeletionTimestamp:
NOW

Kubelet - remove record from API server

HTTPS (WATCH)

Host: Worker(n) Host: Worker

LB

LB

api-int.foo.comHost: Master(n)

apiserver kubelet cri-o

apiserver kubelet cri-o

Host Filesystem
/var/lib/kubelet/pods

Containers

Cgroup Controllers:
cpu, cpuacct, cpuset, memory, hugetlb, pids

Cgroup Hierarchy
- /kubepods.slice
- /kubepods-besteffort.slice
- /kubepods-burstable.slice

Host: Worker (Linux FS State)

Kubelet sends delete to API server to remove record.

Pod
Name: A HTTPS DELETE pod/a

$ kubectl exec mypod

OR

$ kubectl logs mypod

Network Flow - Control Plane to Worker

Request
HTTPS
<node internal IP>
<verb>

Response
HTTPS <verb>

Host: Master(n) Host: Worker(n)

apiserver kubelet

apiserver kubelet

Kubeconfig
Client CA
Client Cert
Client Key

Network
API server connects over default interface to
node advertised internal IP address. Kubelet
serves from :::10250

Kubelet Certificate Rotation
Client and Serving certificates are rotated
automatically. Serving certificates are
validated during rotation.

Listen :::10250

Network Flow - Streaming Requests (ex: exec)

HTTPS (POST) .../pod/exec HTTPS POST <node IP>
/exec/.../pod

unix://var/run/crio.sock
ExecRequest

Generate
streaming
URL & token

proxy

proxy

unix://var/run/crio.sock
ExecResponse

Proxy connection

Host: X Host: Master(n) Host: Worker(n) Host: Worker

client apiserver kubelet cri-oLB

client apiserver kubelet cri-oLB

api.foo.com

Listen :::10250

Network Flows - Logs

HTTPS POST .../pod/log
HTTPS POST
/logs/.../pod unix://var/run/crio.sock

ContainerStatus

Container
Log Path

POST /logs/.../pod
Flush Logs Response

POST .../pod/log
Flush Logs Response

unix://var/run/crio.sock
ContainerStatusResponse

Host: X Host: Master(n) Host: Worker(n) Host: Worker

client apiserver kubelet cri-oLB

client apiserver kubelet cri-oLB

api.foo.com

Listen :::10250

Supporting services
Cluster Logging

Cluster Monitoring

Node - Log Collection
Host: Worker Host: Worker Host: Worker Host: Worker

unix://var/run/crio.sock
Reconcile <operation>

unix://var/run/crio.sock
response <operation>

kubelet cri-o fluentd journaldpod

kubelet cri-o fluentd journald

/var/log/containers/pod-xyz.log

stdout/err

Host: Worker

Collect via
hostpath

/run/log/journal
/var/log

Admin choice for
configuring volatile or
persistent logs in
systemd-journald

Management
Deployed via DaemonSet
Reconciled via ClusterLogging
operator
Defined in openshift-logging
namespace (cluster-admin
management)

Collect via
hostpath

Log Collection - Forwarding
Host: Worker Host: remote

Option 1: Fluentd forward protocol
Transport: tls (cert, verifyhost)
Buffer: chunk, flush, retry
Server: DNS or IP, and port

fluentd thirdparty

fluentd thirdparty

Option 2: syslog protocol (RFC 3164, NOT RFC 5424)
No TLS support
No metadata enrichment

Option 3: Log Forwarding API (Tech Preview)
Define outputs (with optional TLS) for ElasticSearch or Fluentd forward
Define pipelines that associate a type of log to an output
Log types audit, app, and infra

Listens
<somewhere:someip>

Log types

1. Audit - The audit logs recording access to
Kubernetes control plane and the auditd logs
recorded on each node.

2. App - Normal end user pods
3. Infra - Logs from pods in openshift-*, kube*, and

default namespaces that require elevated
cluster-admin privilege for management

