Most of us appreciate when our compiler lets us know we made a mistake. Finding coding errors early lets us correct them before they embarrass us in a code review or, worse, turn into bugs that impact our customers. Besides the compulsory errors, many projects enable additional diagnostics by using the -Wall
and -Wextra
command-line options. For this reason, some projects even turn them into errors via -Werror
as their first line of defense. But not every instance of a warning necessarily means the code is buggy. Conversely, the absence of warnings for a piece of code is no guarantee that there are no bugs lurking in it.
In this article, I would like to shed more light on trade-offs involved in the GCC implementation choices. Besides illuminating underlying issues for GCC contributors interested in implementing new warnings or improving existing ones, I hope it will help calibrate expectations for GCC users about what kinds of problems can be expected to be detected and with what efficacy. Having a better understanding of the challenges should also reduce the frustration the limitations of the available solutions can sometimes cause. (See part 2 to learn more about middle-end warnings.)
The article isn’t specific to any GCC version, but some command-line options it refers to are more recent than others. Most are in GCC 4 that ships with Red Hat Enterprise Linux (RHEL), but some are as recent as GCC 7. The output of the compiler shown in the examples may vary between GCC versions. See How to install GCC 8 on RHEL if you’d like to use the latest GCC.
Continue reading “Understanding GCC warnings”