glibc

Implicit function declarations: flex’s use of “reallocarray”

Implicit function declarations: flex’s use of “reallocarray”

Several months ago, I took over the maintenance of the flex package in Fedora and decided to kick the tires by rebasing the package in Fedora Rawhide. I downloaded and hashed the latest tarball at the time, flex-2.6.4, tweaked the spec file, and fired up a local build. Unfortunately, it failed with a SIGSEGV at build time:

./stage1flex -o stage1scan.c ./scan.l
make[2]: *** [Makefile:1695: stage1scan.c] Segmentation fault (core dumped)

Some debugging with gdb led me to the conclusion that the segmentation fault was the result of a block of memory returned from the reallocarray function being written to during flex initialization.  In this article, I’ll describe the issue further and explain changes made to address it.

Continue reading “Implicit function declarations: flex’s use of “reallocarray””

Share
A platform interface for the GNU C Library

A platform interface for the GNU C Library

Application developers continue to need newer versions of libraries, including core runtimes like GNU C Library (glibc), for their applications. In this article, I’ll look at some issues related to upgrading glibc in an operating system (OS) distribution, and I also encourage you to read Florian Weimer’s excellent blog post on the topic.

The problem

Deciding between a library rebase or continued backporting of commits involves a complex set of risks and rewards. For some customers and users, it is important not to rebase the library (ensuring the lowest risk of impact by change); but for others, the rebase brings valuable bug fixes (lowest risk of impact from known issues). In other cases, the newer library may perform better, even if the interfaces haven’t changed, because it can take advantage of newer hardware or a newer Linux kernel (performance advantage to first mover).

There is no way to simultaneously satisfy all the requirements of slow-moving versus fast-moving development. The recent work in Fedora Modularity is aimed at solving the root of this problem, but there is a limit to this work. The further down the stack you go, the harder the problem becomes. The potential for breakage further up the stack increases. You can’t always arbitrarily change a component’s installed version without consequences, either at build time or at runtime.

Continue reading “A platform interface for the GNU C Library”

Share
The Non-complexity of /etc/nsswitch.conf

The Non-complexity of /etc/nsswitch.conf

In most glibc-based operating systems, there’s a file /etc/nsswitch.conf that most people ignore, few people understand, but all people generally rely on. This file determines where the system finds things like host names, passwords, and protocol numbers. Does your company use LDAP? NIS? Plain files? The nsswitch file (it stands for “name services switch”) tells the system what service to use for each type of name lookup.

Continue reading The Non-complexity of /etc/nsswitch.conf

Share
GNU Toolchain Update – Spring 2018

GNU Toolchain Update – Spring 2018

The GNU Toolchain is a collection of programming tools produced by the GNU Project. The tools are often packaged together due to their common use for developing software applications, operating systems, and low-level software for embedded systems.

This blog is part of a series (see: Fall 2017 Update) covering the latest changes and improvements in the components that make up this Toolchain. Apart from the announcement of new releases, the features described here are at the bleeding edge of software development in the tools. This means that it may be awhile before they make it into production releases, and they might not be fully functional yet. But anyone who is interested in experimenting with them can build their own copy of the Toolchain and then try them out.

Continue reading “GNU Toolchain Update – Spring 2018”

Share
Fall 2017 GNU Toolchain Update

Fall 2017 GNU Toolchain Update

The GNU Toolchain is a collection of programming tools produced by the GNU Project. The tools are often packaged together due to their common use for developing software applications, operating systems, and low-level software for embedded systems.

This blog is part of a regular series covering the latest changes and improvements in the components that make up this Toolchain. Apart from the announcement of new releases, however, the features described here are at the bleeding edge of software development in the tools. This does mean that it may be a while before they make it into production releases, and they might not be fully functional yet. But anyone who is interested in experimenting with them can build their own copy of the Toolchain and then try them out.

Continue reading “Fall 2017 GNU Toolchain Update”

Share
Adding buffer overflow detection to string functions

Adding buffer overflow detection to string functions

This article describes the steps required to add buffer overflow protection to string functions. As a real-world example, we use the strlcpy function, which is implemented in the libbsd library on some GNU/Linux systems.

This kind of buffer overflow protection uses a GNU Compiler Collection (GCC) feature for array size tracking (“source fortification”), accessed through the __builtin_object_size GCC built-in function. In general, these checks are added in a size-checking wrapper function around the original (wrapped) function, which is strlcpy in our example.

Continue reading “Adding buffer overflow detection to string functions”

Share
Practical micro-benchmarking with ‘ltrace’ and ‘sched’

Practical micro-benchmarking with ‘ltrace’ and ‘sched’

Recently I was asked to look into an issue related to QEMU’s I/O subsystem performance – specifically, I was looking for differences in performance between glibc’s malloc and other malloc implementations’. After a good deal of benchmarking I was unable to see a clear difference between our malloc (glibc) and others, not because the implementations were similar, but because there was too much noise in the system; the benchmarks were being polluted by other things, not just in QEMU, but elsewhere in the operating system. I really just wanted to see how much time malloc was using, but it was a small signal in a large noisy system.

To get to the results I needed, I had to isolate malloc’s activity so I could measure it more accurately. In this blog, I’ll document how I extracted the malloc workload, and how to isolate that workload from other system activity so it can be measured more effectively.

Continue reading “Practical micro-benchmarking with ‘ltrace’ and ‘sched’”

Share
Upgrading the GNU C Library within Red Hat Enterprise Linux

Upgrading the GNU C Library within Red Hat Enterprise Linux

Occasionally, there’s a need for a new GNU C Library for a given application to run.  For example, some versions of the Google Chrome browser started to warn users on Red Hat Enterprise Linux 7 that future versions of Chrome would not support their operating system. The Chromium source code contained a version check, flagging all versions of the GNU C Library (glibc) older than 2.19 as obsolete. This check has since been relaxed to 2.17 (the version in Red Hat Enterprise Linux 7), but it is still worth discussing what we can do to support application binaries in Red Hat Enterprise Linux which require a newer glibc version to run.

Distribution-specific binaries

Before discussing the feasibility of glibc upgrades, it is worth noting that there is a disconnect between how GNU/Linux distributions build the applications they ship as part of the distribution, and how independent software vendors (ISVs) build their application binaries.

Continue reading “Upgrading the GNU C Library within Red Hat Enterprise Linux”

Share