Docker

Creating and deploying a Java 8 runtime container image

Creating and deploying a Java 8 runtime container image

A Java runtime environment should be able to run compiled source code, whereas a development kit, for example, OpenJDK, would include all the libraries/binaries to compile and run the source code. Essentially the latter is a superset of the runtime environment. More details on OpenJDK support and lifecycle can be found here.

Red Hat ships and supports container images with OpenJDK for both Java 8 and 11. More details are here. If you are using Red Hat Middleware, the s2i images shipped are also useful to deploy, for example, on Red Hat Openshift Container Platform.

Note that Red Hat only provides OpenJDK-based Java 8 and 11 images. With that said, there will certainly be situations where developers would like to create their own Java runtime images. For example, there could be reasons such as minimizing storage to run a runtime image. On the other hand, a lot of manual work around libraries such as Jolokio or Hawkular and even security parameters would need to be set up as well. If you’d prefer not to get into those details, I would recommend using the container images for OpenJDK shipped by Red Hat.

In this article we will:

  • Build an image with Docker as well as Buildah.
  • We will run that image with Docker as well as Podman on localhost.
  • We will push our image to Quay.
  • Finally, we will run our app by importing a stream into OpenShift.

This article was written for both OpenShift 3.11 and 4.0 beta. Let’s jump right into it.

Continue reading “Creating and deploying a Java 8 runtime container image”

Share
Podman and Buildah for Docker users

Podman and Buildah for Docker users

I was asked recently on Twitter to better explain Podman and Buildah for someone familiar with Docker.  Though there are many blogs and tutorials out there, which I will list later, we in the community have not centralized an explanation of how Docker users move from Docker to Podman and Buildah.  Also what role does Buildah play? Is Podman deficient in some way that we need both Podman and Buildah to replace Docker?

This article answers those questions and shows how to migrate to Podman.

Continue reading “Podman and Buildah for Docker users”

Share
Managing containerized system services with Podman

Managing containerized system services with Podman

In this article, I discuss containers, but look at them from another angle. We usually refer to containers as the best technology for developing new cloud-native applications and orchestrating them with something like Kubernetes. Looking back at the origins of containers, we’ve mostly forgotten that containers were born for simplifying application distribution on standalone systems.

In this article, we’ll talk about the use of containers as the perfect medium for installing applications and services on a Red Hat Enterprise Linux (RHEL) system. Using containers doesn’t have to be complicated, I’ll show how to run MariaDB, Apache HTTPD, and WordPress in containers, while managing those containers like any other service, through systemd and systemctl.

Additionally, we’ll explore Podman, which Red Hat has developed jointly with the Fedora community. If you don’t know what Podman is yet, see my previous article, Intro to Podman (Red Hat Enterprise Linux 7.6) and Tom Sweeney’s Containers without daemons: Podman and Buildah available in RHEL 7.6 and RHEL 8 Beta.

Continue reading “Managing containerized system services with Podman”

Share
Intro to Podman (Red Hat Enterprise Linux 7.6 Beta)

Intro to Podman (Red Hat Enterprise Linux 7.6 Beta)

Red Hat Enterprise Linux (RHEL) 7.6 Beta was released a few days ago and one of the first new features I noticed is Podman. Podman complements Buildah and Skopeo by offering an experience similar to the Docker command line: allowing users to run standalone (non-orchestrated) containers. And Podman doesn’t require a daemon to run containers and pods, so we can easily say goodbye to big fat daemons.

Podman implements almost all the Docker CLI commands (apart from the ones related to Docker Swarm, of course). For container orchestration, I suggest you take a look at Kubernetes and Red Hat OpenShift.

Podman consists of just a single command to run on the command line. There are no daemons in the background doing stuff, and this means that Podman can be integrated into system services through systemd.

We’ll cover some real examples that show how easy it can be to transition from the Docker CLI to Podman.

Continue reading “Intro to Podman (Red Hat Enterprise Linux 7.6 Beta)”

Share
A Beginner’s Guide to Kubernetes (PodCTL Podcast #38)

A Beginner’s Guide to Kubernetes (PodCTL Podcast #38)

If you aren’t following the OpenShift Blog, you might not be aware of the PodCTL podcast. It’s a free weekly tech podcast covering containers, kubernetes, and OpenShift hosted by Red Hat’s Brian Gracely (@bgracely) and Tyler Britten (@vmtyler). I’m reposting this episode here on the Red Hat Developer Blog because I think their realization is spot on—while early adopters might be deep into Kubernetes, many are just starting and could benefit from some insights.

Original Introduction from blog.openshift.com:

The Kubernetes community now has 10 releases (2.5 yrs) of software and experience. We just finished KubeCon Copenhagen, OpenShift Commons Gathering, and Red Hat Summit and we heard lots of companies talk about their deployments and journeys. But many of them took a while (12–18) months to get to where they are today. This feels like the “early adopters” and we’re beginning to get to the “crossing the chasm” part of the market. So thought we’d discuss some of the basics, lessons learned, and other things people could use to “fast-track” what they need to be successful with Kubernetes.

The podcast will always be available on the Red Hat OpenShift blog (search: #PodCTL), as well as on RSS FeedsiTunesGoogle PlayStitcherTuneIn, and all your favorite podcast players.

Continue reading “A Beginner’s Guide to Kubernetes (PodCTL Podcast #38)”

Share
Eclipse Che 6.6 Release Notes

Eclipse Che 6.6 Release Notes

[This article is cross-posted from the Eclipse Che Blog.]

Eclipse Che 6.6 Release Notes

Eclipse Che 6.6 is here! Since the release of Che 6.0, the community has added a number of new capabilities:

  • Kubernetes support: Run Che on Kubernetes and deploy it using Helm.
  • Hot server updates: Upgrade Che with zero downtime.
  • C/C++ support: ClangD Language Server was added.
  • Camel LS support: Apache Camel Language Server Protocol (LSP) support was added.
  • <strong”>Eclipse Java Development Tools (JDT) Language Server (LS): Extended LS capabilities were added for Eclipse Che.
  • Faster workspace loading: Images are pulled in parallel with the new UI.

Quick Start

Che is a cloud IDE and containerized workspace server. You can get started with Che by using the following links:

Continue reading “Eclipse Che 6.6 Release Notes”

Share
Deploying a Spring Boot App with MySQL on OpenShift

Deploying a Spring Boot App with MySQL on OpenShift

This article shows how to take an existing Spring Boot standalone project that uses MySQL and deploy it on Red Hat OpenShift,  In the process, we’ll create docker images which can be deployed to most container/cloud platforms. I’ll discuss creating a Dockerfile, pushing the container image to an OpenShift registry, and finally creating running pods with the Spring Boot app deployed.

To develop and test using OpenShift on my local machine, I used Red Hat Container Development Kit (CDK), which provides a single-node OpenShift cluster running in a Red Hat Enterprise Linux VM, based on minishift. You can run CDK on top of Windows, macOS, or Red Hat Enterprise Linux.   For testing, I used Red Hat Enterprise Linux Workstation release 7.3. It should work on macOS too.

To create the Spring Boot app I used this article as a guide. I’m using an existing openshift/mysql-56-centos7 docker image to deploy MySQL to  OpenShift.

Continue reading “Deploying a Spring Boot App with MySQL on OpenShift”

Share
Introducing conu – Scripting Containers Made Easier

Introducing conu – Scripting Containers Made Easier

There has been a need for a simple, easy-to-use handler for writing tests and other code around containers that would implement helpful methods and utilities. For this we introduce conu, a low-level Python library.

This project has been driven from the start by the requirements of container maintainers and testers. In addition to basic image and container management methods, it provides other often used functions, such as container mount, shortcut methods for getting an IP address, exposed ports, logs, name, image extending using source-to-image, and many others.

Continue reading “Introducing conu – Scripting Containers Made Easier”

Share
A Practical Introduction to Container Terminology

A Practical Introduction to Container Terminology

You might think containers seem like a pretty straightforward concept, so why do I need to read about container terminology? In my work as a container technology evangelist, I’ve encountered misuse of container terminology that causes people to stumble on the road to mastering containers. Terms like containers and images are used interchangeably, but there are important conceptual differences. In the world of containers, repository has a different meaning than what you’d expect. Additionally, the landscape for container technologies is larger than just docker. Without a good handle on the terminology, It can be difficult to grasp the key differences between docker and (pick your favorites, CRI-O, rkt, lxc/lxd) or understand what the Open Container Initiative is doing to standardize container technology.

Background

It is deceptively simple to get started with Linux Containers. It takes only a few minutes to install a container engine like docker and run your first commands. Within another few minutes, you are building your first container image and sharing it. Next, you begin the familiar process of architecting a production-like container environment, and have the epiphany that it’s necessary to understand a lot of terminology and technology behind the scenes. Worse, many of the following terms are used interchangeably… often causing quite a bit of confusion for newcomers.

  • Container
  • Image
  • Container Image
  • Image Layer
  • Registry
  • Repository
  • Tag
  • Base Image
  • Platform Image
  • Layer

Understanding the terminology laid out in this technical dictionary will provide you a deeper understanding of the underlying technologies. This will help you and your teams speak the same language and also provide insight into how to better architect your container environment for the goals you have. As an industry and wider community, this deeper understanding will enable us to build new architectures and solutions. Note, this technical dictionary assumes that the reader already has an understanding of how to run containers. If you need a primer, try starting with  A Practical Introduction to Docker Containers on the Red Hat Developer Blog.

Continue reading “A Practical Introduction to Container Terminology”

Share
Red Hat Container Development Kit (CDK) With Nested KVM

Red Hat Container Development Kit (CDK) With Nested KVM

Why

If you are like me, you probably prefer to install new and exploratory software in a fresh virtual machine (VM) or container to insulate your laptop/desktop from software pollution (TM). Red Hat Container Development Kit (CDK) relies on virtualization to create a Red Hat Enterprise Linux (RHEL) virtual machine to run OpenShift (based on Kubernetes). Red Hat specifically supports installation of the CDK on Windows, macOS, and RHEL Server, but if you are running Fedora, RHEL Workstation, or even CentOS, you will run into trouble. If you are not running a supported desktop, you can always use a RHEL Server virtual machine, and this tutorial is for you.

Continue reading “Red Hat Container Development Kit (CDK) With Nested KVM”

Share