Red Hat Enterprise Linux

Array allocation in C++

This technical article covers a subtlety in C++ array allocation and how we changed the GNU C++ compiler to deal with it properly. When a programmer writes

T *p = new T[3];

the C++ compiler allocates room for at least three copies of objects of type T on the heap. These objects require 3 * sizeof(T) bytes. For this example, assume sizeof(T) is 12, then it is straightforward to allocate 36 bytes (for example, using malloc). But what happens if the array length is 3937053355 (or 16909515400900422315 on a 64-bit architecture)? Then 47244640260 bytes are required. This number cannot be expressed in 32-bits, so if 32-bit arithmetic is used to perform the multiplication, the result is a mere 4. Unless special care is taken, a C++ implementation will provide a pointer to a heap area that is much too small for holding the requested number of objects (4 bytes instead of 47244640260 bytes).

Continue reading “Array allocation in C++”